Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T17:26:59.168Z Has data issue: false hasContentIssue false

Abundance and distribution of fleas on desert rodents: linking Taylor's power law to ecological specialization and epidemiology

Published online by Cambridge University Press:  07 September 2005

B. R. KRASNOV
Affiliation:
Ramon Science Center and Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, P.O. Box 194, Mizpe Ramon 80600, Israel
S. MORAND
Affiliation:
Center for Biology and Management of Populations, Campus International de Baillarguet, CS 30016 34988 Montferrier-sur-Lez cedex, France
I. S. KHOKHLOVA
Affiliation:
Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
G. I. SHENBROT
Affiliation:
Ramon Science Center and Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, P.O. Box 194, Mizpe Ramon 80600, Israel
H. HAWLENA
Affiliation:
Ramon Science Center and Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, P.O. Box 194, Mizpe Ramon 80600, Israel Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

Abstract

We investigated variation in the abundance-prevalence relationships of fleas among 17 different flea-host associations as well as among different species of hosts and fleas in the Negev desert. We explored variation in the value of exponent of Taylor's power relationship with changes in flea community size and flea specialization (host specificity and seasonal pattern of activity). We tested if a simple epidemiological model can reproduce the pattern of the abundance-prevalence relationship. We confirmed aggregated distribution of fleas within a population of host species as well as across a whole host community and the existence of a positive relationship between local flea abundance and their prevalence. Prevalence, mean abundance and variance of abundance were significantly higher in host specific than host opportunistic fleas. When ecological specialization was considered, based on a seasonal pattern of activity, these parameters were higher in year-round-active than seasonal fleas. The degree of flea specialization and flea community richness affected the pattern of the relationship between mean abundance and its variance. Power law slopes decreased with increasing richness of flea community. A simple epidemiological model based on mean flea abundance and degree of aggregation, corrected for host sample size, can predict the observed pattern of prevalence. In some cases, observed flea prevalence was higher than that predicted from the epidemiological model. The discrepancy of the observed prevalence from that predicted by the model can be explained by either a relatively low negative effect of flea parasitism on a host (at least, in terms of pathology) or strong resistance of a host to flea parasitism or both.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. and Gordon, D. M. ( 1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortality. Parasitology 85, 373398.CrossRefGoogle Scholar
Anderson, R. M. and May, R. M. ( 1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219247.Google Scholar
Anderson, R. M. and May, R. M. ( 1979). Prevalence of schistosome infections within molluscan populations: observed patterns and theoretical predictions. Parasitology 79, 6394.CrossRefGoogle Scholar
Anderson, R. M. and May, R. M. ( 1985). Helminth infection of humans: mathematical models, population dynamics and control. Advances in Parasitology 24, 1101.CrossRefGoogle Scholar
Anderson, R. M., Gordon, D. M., Crawley, M. J. and Hassel, P. M. ( 1982). Variability in the abundance of animal and plant species. Nature, London 296, 245248.CrossRefGoogle Scholar
Barger, M. A. and Esch, G. W. ( 2002). Host specificity and the distribution-abundance relationship in a community of parasites infecting fishes in streams of North Carolina. Journal of Parasitology 88, 446453.Google Scholar
Boeken, B. and Shachak, M. ( 1998). The dynamics of abundance and incidence of annual plant species richness during colonization in a desert. Ecography 21, 6373.CrossRefGoogle Scholar
Brown, J. H. ( 1984). On the relationship between abundance and distribution of species. American Naturalist 124, 255279.CrossRefGoogle Scholar
Brown, J. H. ( 1995). Macroecology. University of Chicago Press, Chicago.
Combes, C. ( 2001). Parasitism. The Ecology and Evolution of Intimate Interactions. University of Chicago Press, Chicago.
Dobson, A. ( 1990). Models for multi-species-host-communities. In Parasite Communities: Patterns and Processes ( ed. Esch, G. W., Bush, A. O. and Aho, J. M.), pp. 260288. Chapman and Hall, London.CrossRef
Downing, J. A. ( 1986). Spatial heterogeneity: evolved behaviour or mathematical artefact. Nature, London 323, 255257.CrossRefGoogle Scholar
Elliot, J. M. ( 1977). Some Methods for Statistical Analysis of Samples of Benthic Invertebrates, 2 Edn. Freshwater Biological Association Sceintific Publications, No. 25, Titus Wilson and Son, Ambleside, UK.
Felsenstein, J. ( 1985). Phylogenies and the comparative method. American Naturalist 125, 115.CrossRefGoogle Scholar
Garland, T. Jr, Harvey, P. H. and Ives, A. R. ( 1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. American Naturalist 41, 1832.Google Scholar
Gaston, K. J. ( 1999). Implications of interspecific and intraspecific abundance-occupancy relationships. Oikos 86, 195207.CrossRefGoogle Scholar
Gaston, K. J. ( 2003). The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford.
Gaston, K. J., Blackburn, T. M. and Lawton, J. H. ( 1997). Interspecific abundance-range size relationships: an appraisal of mechanisms. Journal of Animal Ecology 66, 579601.CrossRefGoogle Scholar
Hanski, I. ( 1982). Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210221.CrossRefGoogle Scholar
Hanski, I. ( 1991). Single-species metapopulation dynamics: concepts, models and observations. In Metapopulation Dynamics: Empirical and Theoretical Investigations ( ed. Gilpin, M. and Hanski, I.), pp. 1738. Linnean Society of London, Academic Press, London.CrossRef
Hanski, I., Kouki, J. and Halkka, A. ( 1993). Three explanations of the positive relationship between distribution and abundance of species. In Species Diversity in Ecological Communities. Historical and Geographical Perspectives ( ed. Ricklefs, R. E. and Schluter, D.), pp. 108116. University of Chicago Press, Chicago.
Keymer, A. E. ( 1982). Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology 84, 573587.CrossRefGoogle Scholar
Khokhlova, I. S., Krasnov, B. R., Kam, M., Burdelova, N. V. and Degen, A. A. ( 2002). Energy cost of ectoparasitism: the flea Xenopsylla ramesis on the desert gerbil Gerbillus dasyurus. Journal of Zoology, London 258, 349354.CrossRefGoogle Scholar
Khokhlova, I. S., Spinu, M., Krasnov, B. R. and Degen, A. A. ( 2004). Immune responses to fleas in two rodent species differing in natural prevalence of infestation and diversity of flea assemblages. Parasitology Research 94, 304311.CrossRefGoogle Scholar
Kilpatrick, A. M. and Ives, A. R. ( 2003). Species interactions can explain Taylor's power law for ecological time series. Nature, London 422, 6568.CrossRefGoogle Scholar
Krasnov, B. R., Shenbrot, G. I., Medvedev, S. G., Vatschenok, V. S. and Khokhlova, I. S. ( 1997). Host-habitat relation as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology 114, 159173.CrossRefGoogle Scholar
Krasnov, B. R., Hastriter, M., Medvedev, S. G., Shenbrot, G. I., Khokhlova, I. S. and Vaschenok, V. S. ( 1999). Additional records of fleas (Siphonaptera) on wild rodents in the southern part of Israel. Israel Journal of Zoology 45, 333340.Google Scholar
Krasnov, B. R., Khokhlova, I. S. and Shenbrot, G. I. ( 2002 a). The effect of host density on ectoparasite distribution: an example with a desert rodent parasitized by fleas. Ecology 83, 164175.Google Scholar
Krasnov, B. R., Burdelova, N. V., Shenbrot, G. I. and Khokhlova, I. S. ( 2002 b). Annual cycles of four flea species (Siphonaptera) in the central Negev desert. Medical and Veterinary Entomology 16, 266276.Google Scholar
Krasnov, B. R., Poulin, R., Shenbrot, G. I., Mouillot, D. and Khokhlova, I. S. ( 2004). Ectoparasitic “jacks-of-all-trades”: relationship between abundance and host specificity in fleas (Siphonaptera) parasitic on small mammals. American Naturalist 164, 506516.Google Scholar
Maddison, W. P. and Maddison, D. R. ( 2004). Mesquite: a Modular System for Evolutionary Analysis. Version 1.05. http://mesquiteproject.org.
Madhavi, R. and Anderson, R. M. ( 1985). Variability in the susceptibility of the fish host, Poecilia reticulata, to infection with Gyrodactylus bullatarudis (Monogenea). Parasitology 91, 531544.CrossRefGoogle Scholar
May, R. M. ( 1975). Patterns of species abundance and diversity. In Ecology and Evolution of Communities ( ed. Cody, M. L. and Diamond, J. M.), pp. 81120. Harvard University Press, Cambridge, USA.
May, R. M. and Anderson, R. M. ( 1978). Regulation and stability of host-parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology 47, 455461.Google Scholar
Midford, P. E., Garland, T. Jr. and Maddison, W. ( 2004). PDAP:PDTREE Package for Mesquite, version 1.05. http://mesquiteproject.org/pdap_mesquite/index.html
Morand, S. and Guégan, J.-F. ( 2000). Distribution and abundance of parasite nematodes: ecological specialization, phylogenetic constraints or simply epidemiology? Oikos 88, 563573.Google Scholar
Morand, S., Pointier, J.-P., Borel, G. and Theron, A. ( 1993). Pairing probability of schistosomes related to their distribution among the host population. Ecology 74, 24442449.CrossRefGoogle Scholar
Moré, J. ( 1977). The Levenberg-Marquardt algorithm: implementation and theory. In Numerical Analysis ( ed. Watson, G. A.), pp. 105116. SpringerVerlag, NY.
Nee, S., Gregory, R. D. and May, R. M. ( 1991). Core and satellite species: theory and artefacts. Oikos 62, 8387.CrossRefGoogle Scholar
Perry, J. N. ( 1988). Some models for spatial variability of animal species. Oikos 51, 124130.CrossRefGoogle Scholar
Perry, J. N. and Taylor, L. R. ( 1986). Stability of real interacting populations in space and time: Implications, alternatives and negative binomial kc. Journal of Animal Ecology 55, 10531068.CrossRefGoogle Scholar
Poulin, R. ( 1993). The disparity between observed and uniform distibutions: a new look at parasite aggregation. International Journal for Parasitology 23, 937944.CrossRefGoogle Scholar
Poulin, R. ( 1998 a). Evolutionary Ecology of Parasites. From Individuals to Communities. Chapman and Hall, London.
Poulin, R. ( 1998 b). Large-scale patterns of host use by parasites of freshwater fishes. Ecology Letters 1, 118128.Google Scholar
Poulin, R. ( 1999). The intra- and interspecific relationships between abundance and distribution in helminth parasites of birds. Journal of Animal Ecology 68, 719725.CrossRefGoogle Scholar
Poulin, R. and Mouillot, D. ( 2003). Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitology 126, 473480.CrossRefGoogle Scholar
Simkova, A., Kadlec, D., Gelnar, M. and Morand, S. ( 2002). Abundance-prevalence relationship of gill congeneric ectoparasites: testing the core satellite hypothesis and ecological specialization. Parasitology Research 88, 682686.Google Scholar
Shaw, D. J. and Dobson, A. P. ( 1995). Patterns of macroparasite abundance and aggregation in wildlife populations: A quantitative review. Parasitology 111, S111S127.CrossRefGoogle Scholar
Shaw, D. J., Grenfell, B. T. and Dobson, A. P. ( 1998). Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117, 597610.CrossRefGoogle Scholar
Southwood, T. R. E. ( 1966). Ecological Methods. Chapman and Hall, London.
Stanko, M., Miklisova, D., Gouy De Bellocq, J. and Morand, S. ( 2002). Mammal density and patterns of ectoparasite species richness and abundance. Oecologia 131, 289295.CrossRefGoogle Scholar
Taylor, L. R. ( 1961). Aggregation, variance and the mean. Nature, London 189, 732735.CrossRefGoogle Scholar
Taylor, L. R. and Taylor, R. A. J. ( 1977). Aggregation, migration and population dynamics. Nature, London 265, 415421.CrossRefGoogle Scholar
Taylor, L. R. and Woiwod, I. P. ( 1980). Temporal stability as a density-dependent species characteristic. Journal of Animal Ecology 49, 209224.CrossRefGoogle Scholar
Taylor, L. R., Woiwod, I. P. and Perry, J. N. ( 1978). The density-dependence of spatial behaviour and the rarity of randomness. Journal of Animal Ecology 47, 383406.CrossRefGoogle Scholar
Taylor, L. R., Woiwod, I. P. and Perry, J. N. ( 1979). The negative binomial as a dynamic ecological model and density-dependence of k. Journal of Animal Ecology 48, 289304.CrossRefGoogle Scholar
Williamson, M. and Gaston, K. J. ( 1999). A simple transformation for sets of range sizes. Ecography 22, 674680.CrossRefGoogle Scholar
Wilson, K., Bjørnstad, O. N., Dobson, A. P., Merler, S., Poglaen, G., Randolph, S. E., Read, A. F. and Skorping, A. ( 2001). Heterogeneities in macroparasite infections: Patterns and processes. In The Ecology of Wildlife Diseases ( ed. Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. and Dobson, A. P.), pp. 644. Oxford University Press, Oxford.