Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-07T04:42:07.120Z Has data issue: false hasContentIssue false

The cuticle of adult Nippostrongylus brasiliensis

Published online by Cambridge University Press:  06 April 2009

D. L. Lee*
Affiliation:
Molteno Institute, University of Cambridge
*
*This investigation was supported by U.S.P.H.S. grant AI-04275 from the National Institute of Allergy and Infectious Diseases.

Extract

The cuticle of adults of Nippostrongylus brasiliensis has been described using histological, histochemical and ultrastructural techniques.

The cuticle has the following layers: an outer triple-layered membrane; a single cortical layer; a fluid-filled layer which is traversed by numerous collagen fibrils; struts which support the fourteen longitudinal ridges of the cuticle and which are suspended by collagen fibrils in the fluid-filled layer; two fibre layers, each layer apparently containing three layers of fibres; and a basement lamella.

The fluid-filled layer contains haemoglobin and esterase.

The muscles of the body wall are attached to either the basement lamella or to the fibre layers of the cuticle.

The mitochondria of the hypodermis are of normal appearance.

The longitudinal ridges of the cuticle appear to abrade the microvilli of the intestinal cells of the host.

Possible functions of the cuticle are discussed.

I wish to thank Dr P. Tate, in whose department this work was done, for helpful suggestions and criticism at all stages of this work, and Mr A. Page for technical assistance. I also wish to thank Professor Boyd for permission to use the electron microscope in the Department of Anatomy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beckett, E. B. & Boothroyd, B. (1961). Some observations on the fine structure of the mature larva of the nematode Trichinella spiralis. Ann. trop. Med. Parasit. 55, 116–24.CrossRefGoogle ScholarPubMed
Bird, A. F. (1957). Chemical composition of the nematode cuticle. Observations on individual layers and extracts from these layers in Ascaris lumbricoides cuticle. Expl Parasit. 6, 383403.CrossRefGoogle ScholarPubMed
Bird, A. F. (1958). The adult female cuticle and egg sac of the genus Meloidogyne Goeldi, 1887. Nematologica, 3, 205–12.CrossRefGoogle Scholar
Bird, A. F. & Deutsch, K. (1957). The structure of the cuticle of Ascaris lumbricoides var. suis. Parasitology, 47, 319–28.CrossRefGoogle ScholarPubMed
Brown, C. H. (1950). Quinone tanning in the animal kingdom. Nature, Lond., 165, 275.CrossRefGoogle ScholarPubMed
Chitwood, B. G. & Chitwood, M. B. (1950). An Introduction to Nematology. Baltimore: Monumental Printing Co.Google Scholar
Davenport, H. E. (1949). The haemoglobins of Nippostrongylus muris (Yokogawa) and Strongylus spp. Proc. roy. Soc. B, 136, 271–80.Google Scholar
Ellenby, C. (1946). Nature of the cyst wall of the potato-root eelworm Heterodera rostochiensis, Wollenweber, and its permeability to water. Nature, Lond., 157, 302.CrossRefGoogle ScholarPubMed
Ellenby, C. (1963). Masked polyphenols in the cuticle of a cyst forming nematode. Experientia, 19, 256.CrossRefGoogle Scholar
Harris, J. E. & Crofton, H. D. (1957). Structure and function in the nematodes: internal pressure and cuticular structure in Ascaris. J. exp. Biol. 34, 116–30.CrossRefGoogle Scholar
Hinz, E. (1963). Elektronenmikroskopische Untersuchungen an Parascaris equorum. Protoplasma, 56, 202–41.CrossRefGoogle Scholar
Johri, L. N. & Smyth, J. D. (1956). A histochemical approach to the study of helminth morphology. Parasitology, 46, 107–16.CrossRefGoogle Scholar
Karnovsky, M. J. (1961). Simple methods for ‘staining with lead’ at high pH in electron microscopy. J. biophys. biochem. Cytol. 11, 729–32.CrossRefGoogle ScholarPubMed
Keeling, J. E. D. (1960). The effects of ultra-violet radiation on Nippostrongylus muris. I. Irradiation of infective larvae: lethal and sublethal effects. Ann. trop. Med. Parasit. 54, 182–91.CrossRefGoogle ScholarPubMed
Kmetec, E., Miller, J. H. & Swartzwelder, J. C. (1962). Isolation and structure of mitochondria from Ascaris lumbricoides muscles. Expl Parasit. 12, 184–91.CrossRefGoogle Scholar
Lee, D. L. (1962). The distribution of esterase enzymes in Ascaris lumbricoides. Parasitology, 52, 241–60.CrossRefGoogle Scholar
Lucker, J. T. (1936). Preparasitic moults of Nippostrongylus muris with remarks on the structure of the cuticula of Trichostrongyles. Parasitology, 28, 161–71.CrossRefGoogle Scholar
Pearse, A. G. E. (1960). Histochemistry. Theoretical and Applied, 2nd ed.London: J. and A. Churchill Ltd.Google Scholar
Picken, L. E. R., Pryor, M. G. & Swann, M. M. (1947). Orientation of fibrils in natural membranes. Nature, Lond., 159, 434.CrossRefGoogle ScholarPubMed
Roberts, L. S. & Fairbairn, D. (1963). Metabolism of Nippostrongylus brasiliensis (Nematoda: Trichostrongyloidea). J. Parasit. 49 (Suppl.), 51.Google Scholar
Rogers, W. P. (1949). The biological significance of haemoglobin in nematode parasites. I. The characteristics of the purified pigments. Aust. J. sci. Res. B, 2, 287303.Google Scholar
Scholander, P. F. (1960). Oxygen transport through hemoglobin solutions. Science, 131, 585–90.CrossRefGoogle ScholarPubMed
Yokogawa, S. (1922). The development of Heligmosomum muris Yokogawa, a nematode from the intestine of the wild rat. Parasitology, 14, 127–66.CrossRefGoogle Scholar