Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T12:38:39.577Z Has data issue: false hasContentIssue false

Differentiation between culture-derived insect stages of T. brucei, T. vivax, T. congolense and T. simiae using a monoclonal antibody-based dot–ELISA

Published online by Cambridge University Press:  06 April 2009

K. M. Bosompem
Affiliation:
Noguchi Memorial Institute for Medical Research, P.O. Box 25, Legon, Accra, Ghana
R. K. G. Assoku
Affiliation:
Noguchi Memorial Institute for Medical Research, P.O. Box 25, Legon, Accra, Ghana
V. M. Nantulya
Affiliation:
Noguchi Memorial Institute for Medical Research, P.O. Box 25, Legon, Accra, Ghana

Summary

A sensitive and specific nitrocellulose (NC) membrane-based dot–ELISA, utilizing a panel of monoclonal antibodies (mAbs), was developed for differentiation between in vitro-derived procyclic forms of Trypanosoma brucei, T. congolense and T. simiae, and epimastigotes of T. vivax. Trypanosomes in suspension were applied onto NC membrane in dots and probed with unlabelled trypanosome species-specific mAbs. Bound mAb was revealed by enzyme labelled anti-mouse IgG and precipitable chromogenic substrate. The assay detected the aforementioned trypanosome species in both single and artificially mixed preparations. Ten T. brucei, 4 T. vivax, 7 T. congolense and 3 T. simiae procyclic stocks and clones from different geographical areas were tested and identified using the specific mAbs in the dot–ELISA which had a specificity of 100%. Some of the T. brucei, T. congolense and Nannomonas-specific mAbs could detect as few as 10 trypanosomes/dot, whilst 1 T. vivax mAb was able to detect a minimum of 100 trypanosomes/dot in monospecies preparations. A concentration of 1 × 104 trypanosomes/μ/dot was eventually determined as ideal for testing in the dot–ELISA. Antigen dots stored at 4 °C under desiccated conditions did not show any loss in activity for up to 90 days. However, when stored under similar conditions at room temperature (17–26 °C), the T. congolense-specific antigen remained unaffected up to 60 days, and then showed decreased activity when tested on day 90.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boctor, F. N., Stek, M. J. Jr., Peter, J. B. & Kamal, R. (1987). Simplification and standardization of Dot–ELISA for human Schistosomiasis mansoni. Journal of Parasitology 73, 589–92.CrossRefGoogle ScholarPubMed
Boeye, A. (1986). Clonal isolation of hybridoma by manual single-cell isolation. Methods in Enzymology 121, 332–41.CrossRefGoogle ScholarPubMed
Bosompem, K. M. (1993). Development of monoclonal antibody-based assays for the detection and differentiation of trypanosome species in the tsetse fly (Glossina species). Ph.D. thesis, Department of Animal Science, University of Ghana, Legon.Google Scholar
Brun, R. & Schönenberger, M. (1979). Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semidefined medium. Acta Tropica 36, 289–92.Google Scholar
Burt, S. M., Carter, T. J. N. & Kricka, L. J. (1979). Thermal characteristics of microtitre plates used in immunological assays. Journal of Immunological Methods 31, 231–6.CrossRefGoogle ScholarPubMed
Cunningham, I. (1977). New culture medium for maintenance of tsetse tissues and growth of trypanosomatids. Journal of Protozoology 24, 325–9.CrossRefGoogle ScholarPubMed
Gardiner, P. R. (1989). Recent studies of the biology of Trypanosoma vivax. Advances in Parasitology 28, 229317CrossRefGoogle ScholarPubMed
Gashumba, J. K., Gibson, W. C. & Opiyo, E. A. (1986). A preliminary comparison of Trypanosoma simiae and T. congolense by isoenzyme electrophoresis. Acta Tropica 43, 1519.Google Scholar
Gray, M. A., Cunningham, I., Gardiner, P. R., Taylor, A. M. & Luckins, A. G. (1981). Cultivation of infective forms of Trypanosoma congolense from trypanosomes in the proboscis of Glossina morsitans. Parasitology 82, 8195.CrossRefGoogle ScholarPubMed
Gumm, I. D. (1991). The axenic cultivation of insect forms of Trypanosoma (Duttonella) vivax and development to the infective metacyclic stage. Journal of Protozoology 38, 163–71.CrossRefGoogle Scholar
Hawkes, R., Niday, E. & Gordon, J. (1982). A dot-immunobinding assay for monoclonal and other antibodies. Analytical Biochemistry 119, 142–7.CrossRefGoogle ScholarPubMed
Kricka, L. J., Carter, T. J. N., Burt, S. M., Kennedy, J. H., Holder, R. L., Holliday, M. I., Telford, M. E. & Wisdom, G. B. (1980). Variability in the adsorption properties of microtitre plates used as solid supports in enzyme immunoassay. Clinical Chemistry 26, 741–4.CrossRefGoogle ScholarPubMed
Kumar, S., Band, A. H., Samantaray, J. C., Dang, N. & Talwar, G. P. (1985). A dot–enzyme-linked immunosorbent assay for detection of antibodies against Entamoeba histolytica. Journal of Immunological Methods 83, 125–33.CrossRefGoogle ScholarPubMed
Lin, T. M. & Halbert, S. P. (1986). Rapid dot enzyme immunoassay for the detection of antibodies to cytomegalovirus. Journal of Clinical Microbiology 24, 711.CrossRefGoogle ScholarPubMed
Londner, M. V., Rosen, G., Sintov, A. & Spira, D. T. (1987). The feasibility of a dot enzyme-linked immunosorbent assay (Dot–ELISA) for the diagnosis of Plasmodium falciparum antigens and antibodies. American Journal of Tropical Medicine and Hygiene 36, 240–5.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Maina, M., Waitumbi, J. N., Mihok, S. & Zweygarth, E. (1993). Trypanosoma (Nannomonas) congolense: molecular characterization of a new genotype from Tsavo, Kenya. Parasitology 106, 151–62.CrossRefGoogle ScholarPubMed
McFarlane, I. G., Tolley, P., Major, G., McFarlane, B. M. & Williams, R. (1983). Development of a micro enzyme-linked immunosorbent assay for antibodies against liver-specific membrane. Lipoprotein 64, 215–25.Google ScholarPubMed
McNamara, J. J. & Snow, W. F. (1991). Improved identification of Nannomonas infections in tsetse flies from The Gambia. Acta Tropica 48, 127–36.CrossRefGoogle Scholar
Nantulya, V. M., Musoke, A. J., Rurangirwa, F. R., Saigar, N. & Minja, S. H. (1987). Monoclonal antibodies that distinguish Trypanosoma congolense, T. vivax and T. brucei. Parasite Immunology 9, 421–31.CrossRefGoogle ScholarPubMed
Otieno, L. H. (1983). Inadequacy of the dissection method of estimating trypanosome infection rates. Annals of Tropical Medicine and Parasitology 77, 329–30.CrossRefGoogle ScholarPubMed
Pappas, M. G. (1988). Recent applications of the dot–ELISA in immunoparasitology. Veterinary Parasitology 29, 105–29.CrossRefGoogle ScholarPubMed
Pappas, M. G., Hajkowski, R. & Hockmeyer, W. T. (1983). Dot–enzyme-linked immunosorbent assay (Dot– ELISA): a micro technique for the rapid diagnosis of visceral leishmaniasis. Journal of Immunological Methods 64, 205–14.CrossRefGoogle Scholar
Pappas, M. G., Hajkowski, R. & Hockmeyer, W. T. (1984). Standardization of the dot enzyme-linked immunosorbent assay (Dot–ELISA) for human visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene 33, 1105–11.CrossRefGoogle ScholarPubMed
Pappas, M. G., Schantz, P. M., Cannon, L. T. Sr & Wahlquist, S. P. (1986). Dot–ELISA for the rapid serodiagnosis of human hydatid disease. Diagnostic Immunology 4, 271–6.Google ScholarPubMed
Pearson, T. W., Moloo, S. K. & Jenni, L. (1987). Culture form and tsetse fly midgut form procyclic Trypanosoma brucei express common proteins. Molecular and Biochemical Parasitology 25, 273–8.CrossRefGoogle ScholarPubMed
Richardson, J. P., Jenni, L., Beecroft, R. P. & Pearson, T. W. (1986). Procyclic tsetse fly midgut forms and culture forms of African trypanosomes share stage-specific surface antigens identified by monoclonal antibodies. Journal of Immunology 136, 2259–64.CrossRefGoogle ScholarPubMed
Towbin, H. & Gordon, J. (1984). Immunobloting and dot immunobinding current status and outlook. Journal of Immunological Methods 72, 313–40.CrossRefGoogle Scholar
Tracer, W. (1959). Tsetse fly tissue culture and the development of trypanosomes to the infective stage. Annals of Tropical Medicine and Parasitology 53, 473–91.Google Scholar
Whelen, A. C., Richardson, L. K. & Wikel, S. K. (1986). Dot–ELISA assessment of guinea pig antibody responses to repeated Dermacentor andersoni infestations. Journal of Parasitology 72, 155–62.CrossRefGoogle ScholarPubMed
World Health Organization (1979). The African trypanosomiasis. WHO Technical Report Series No. 635; Geneva: FAO Animal production and Health.Google Scholar
Zimmerman, G. L., Nelson, M. J. & Clark, C. R. B. (1985). Diagnosis of ovine fascioliasis by a dot enzyme-linked immunosorbent assay: a rapid microdiagnostic technique. American Journal of Veterinary Research 46, 1513–15.Google ScholarPubMed