Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T14:15:01.220Z Has data issue: false hasContentIssue false

DNA base composition of filarial nematodes

Published online by Cambridge University Press:  06 April 2009

N. Rothstein
Affiliation:
Department of PathologyAlbert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
T. J. Stoller
Affiliation:
Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
T. V. Rajan
Affiliation:
Department of PathologyAlbert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461

Summary

We have determined the molar content of guanine + cytosine (GC content) of DNA of the filarial nematode (Brugia malayi, Brugia pahangi and Dirofilaria imitis) and of the free-living soil nematodes Caenorhabditis elegans and have analysed the DNA for the presence of methylcytosine. Two independent methods, thermal denaturation and direct analysis of base content by HPLC following enzymatic hydrolysis, reveal that the GC content of filarial nematodes is 26–28%. We have been unable to find methylcytosine in the DNA of B. malayi.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Behme, R. & Pasternak, J. (1969). DNA base composition of some free-living nematode species. Canadian Journal of Genetics and Cytology 11, 9931000.CrossRefGoogle ScholarPubMed
Emmons, S. W., Klass, M. R. & Hirsh, D. (1979). Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 76, 1333–7.CrossRefGoogle ScholarPubMed
Mandel, M. & Marmur, J. (1968). Use of UV-temperature profile for determining the G + C content of DNA. Methods in Enzymology 12, 195206.CrossRefGoogle Scholar
Marmur, J. & Doty, P. (1962). Determination of base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5, 109–18.CrossRefGoogle ScholarPubMed
Pollack, Y., Katzen, A. L., Spira, D. T. & Golenser, J. (1982). The genome of Plasmodium falciparum. I. DNA base composition. Nucleic Acids Research 10, 539–46.CrossRefGoogle ScholarPubMed
Sulston, J. E. & Brenner, S. (1974). The DNA of Caenorhabditis elegans. Genetics 77, 95104.CrossRefGoogle ScholarPubMed
Wilson, V. L., Smith, R. A., Autrup, H., Krokan, H., Musci, D. E., Le, N. N. T., Longoria, J., Ziska, D. & Harris, C. C. (1986). Genomic 5-methylcytosine determination by 32P-postlabeling analysis. Analytical Biochemistry 152, 275–84.CrossRefGoogle ScholarPubMed