Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-06T23:35:32.943Z Has data issue: false hasContentIssue false

Flight muscle ultrastructure of susceptible and refractory mosquitoes parasitized by larval Brugia pahangi

Published online by Cambridge University Press:  06 April 2009

M. J. Lehane
Affiliation:
Department of Entomology, London School of Hygiene and Tropical Medicine, Keppel Street, (Gower Street), London WC1E 7HT
B. R. Laurence
Affiliation:
Department of Entomology, London School of Hygiene and Tropical Medicine, Keppel Street, (Gower Street), London WC1E 7HT

Extract

On parasitization with larval Brugia pahangi the infected flight muscle fibres of ‘resistant’ Anopheles labranchiae atroparvus undergo the following ultrastructural changes. The fibres become almost totally devoid of glycogen, their sarcoplasmic reticulum becomes elongate and closely associated with muscle fibrils. These fibrils degenerate and vesicles appear both within the degenerate fibril and within elements of the sarcoplasmic reticulum. Vesicles accumulate around the worm and degenerate to a uniform mass which eventually becomes melanized from its inner edge (next to the parasite) outwards.

The infected flight muscle fibres of both ‘resistant’ Aedes aegypti and ‘susceptible’ Aedes togoi are almost totally devoid of glycogen granules, but show no other ultrastructural change from the uninfected state.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brunhes, M. J. & Brunhes, J. (1972). Etude histologique, chez Mansonia uniformis Theobald et Anopheles gambiae B Giles, de l' évolution de Wucheria bancrofti Cobbold et des intéractions entre la filaire et ces deux hôtes. Cahiers O.R.S.T.O.M. Entomologie Médicale et Parasitologie 10, 217–33.Google Scholar
Burton, G. J. (1963). Encapsulation of Wucheria bancrofti in seven speices of mosquitoes in British Guiana. American Journal of Tropical Medicine and Hygiene 12, 870–6.CrossRefGoogle Scholar
Crossley, A. C. (1968). The fine structure and mechanism of breakdown of larval intersegmental muscles in the blowfly Calliphora erythrocephala. Journal of Insect Physiology 14, 13891407.CrossRefGoogle Scholar
Crossely, A. C. S. (1972). Ultrastructural changes during transition of larval to adult intersegmental muscle at metamorphosis in the blowfly Calliphora erythrocephala. 1. Dedifferentiation and myoblast fusion. Journal of Embryology and Experimental Morphology 27, 4374.Google Scholar
Eppig, J. J. (1974). Tyrosinase. In Electron Microscopy of Enzymes, Vol. 2 (ed. Hayat, M. A.). New York and London: Van Nostrand Reinhold Co.Google Scholar
Esslinger, J. H. (1962). Behavior of microfilariae of Brugia pahangi in Anopheles quadrimaculatus. American Journal of Tropical Medicine and Hygiene 11, 749–58.CrossRefGoogle Scholar
Etherton, J. E. & Botham, C. M. (1970). Factors affecting lead capture methods for the fine localization of rat lung acid phosphatase. Histochemical Journal 2, 507–19.CrossRefGoogle ScholarPubMed
Götz, P. & Vey, A. (1974). Humoral encapsulation in Diptera (Insecta): defence reactions of Chironomus larvae against fungi. Parasitology 68, 193205.CrossRefGoogle ScholarPubMed
Kan, S. P. & Ho, B. C. (1973). Development of Brugia pahangi in the flight muscles of Aedes togoi. Ultra structural changes in the infected muscle fibres and the infecting filarial larvae. American Journal of Tropical Medicine and Hygiene 22, 179–88.CrossRefGoogle Scholar
Laurence, B. R. (1970). Problems of the adaptation of filarial worms to their mosquito hosts. In H. D. Srivastava Commemoration Volume (ed. Singh, K. S. and Tandan, B. K.), pp. 917. Division of Parasitology, Indian Veterinary Research Iinstitute, Izatnagar, U.P. India.Google Scholar
Laurence, B. R. & Pester, F. R. N. (1967). Adaptation of a filarial worm. Brugia patei, to a new mosquito host, Aedes togoi. Journal of Helminthology 41, 365–92.CrossRefGoogle Scholar
McGreevy, P. B., McClelland, G. A. H. & Lavoipierre, M. M. J. (1974). Inheritance of susceptibility to Dirofilaria immitis infection in Aedes aegypti. Annals of Tropical Medicine and Parasitology 68, 97109.CrossRefGoogle ScholarPubMed
Maïer, W. (1973). Die Phenoloxydase von Chironomus thummi und ihre Beeinflussung durch parasitare Mermithiden. Journal of Insect Physiology 19, 8595.CrossRefGoogle Scholar
Muldrew, J. A. (1953). The natural immunity of the larch sawfly (Pristiphora erichsonii (Htg.)) to the introduced parasite Mesoleius tenthredinis Morley, in Manitoba and Saskatchewan. Canadian Journal of Zoology 31, 313–32.CrossRefGoogle Scholar
Oothuman, P., Simpson, M. G. & Laurence, B. R. (1974). Abnoraml development of a filarial worm, Brugia patei (Buckley, Nelson and Heisch), in a mosquito host. Anopheles labranchiae atroparvus van Thiel. Journal of Helminthology 48, 161–5.CrossRefGoogle Scholar
Salt, G. (1963). The defence reactions of insects to metazon parasites. Parasitology 53, 527642.CrossRefGoogle ScholarPubMed
Salt, G. (1970). The Cellular Defence Reactions of Insects. Cambridge University Press.CrossRefGoogle Scholar
Schacher, J. F. (1962). Morphology of the microfilaria of Brugia pahangi and of the larval stages in the mosquito. Journal of Parasitology 48, 679–92.CrossRefGoogle ScholarPubMed
Sohal, R. S. & Allison, V. F. (1971). Senescent changes in the cardiac myofiber of the house fly, Musca domestica: An electron microscopic study. Journal of Gerontology 26, 490–6.CrossRefGoogle ScholarPubMed
Townson, H. (1970). The effect of infection with Brugia pahangi on the flight of Aedes aegypti. Annals of Triphical Medicine of Parasitology 64, 411–20.CrossRefGoogle ScholarPubMed
Vey, A. & Götz, P. (1975). Humoral encapsulation in Diptera (Insecta): comparative studies in vitro. Parasitology 70, 7786.CrossRefGoogle Scholar