Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T18:31:21.978Z Has data issue: false hasContentIssue false

Genetic control of susceptibility to Taenia crassiceps cysticercosis

Published online by Cambridge University Press:  06 April 2009

G. Fragoso
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, UNAM, México, D. F. 04510, México
E. Lamoyi
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, UNAM, México, D. F. 04510, México
A. Mellor
Affiliation:
Division of Molecular Immunology, National Institute for Medical Research, London NW7 1AA, UK
C. Lomeli
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, UNAM, México, D. F. 04510, México
T. Govezensky
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, UNAM, México, D. F. 04510, México
E. Sciutto
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, UNAM, México, D. F. 04510, México

Summary

We previously reported that genes within the major histocompatibility complex influence the intensity of Taenia crassiceps murine cysticercosis. This genetic control, readily apparent in mice of BALB background, was further studied in H-2 congenic and recombinant B10 mice as well as in BALB/c substrains differing in expression of Qa-2 antigens. Similarly low parasite numbers were found in all B10-derived strains infected, regardless of H-2 haplotype, indicating that the effect of H-2 genes in controlling susceptibility is overridden in mice of B10 background. BALB/c substrains differed significantly in susceptibility. BALB/cAnN was highly susceptible, whereas BALB/cJ, in contrast, was highly resistant and BALB/cByJ showed intermediate susceptibility. Susceptibility or resistance in BALB/c substrains may be associated to differences known to distinguish them, such as serum testosterone levels and Qa-2 protein expression. In bidirectional F1 hybrids of C57BL/6J and BALB/cAnN resistance to cysticercosis was inherited as a dominant autosomal trait. In F1 hybrids of BALB/cJ with BALB/cAnN, BALB/cByJ and BALB.K resistance was also inherited as a dominant trait. However, in (BALB/cAnN × BALB/cByJ)F1 and (BALB/cAnN × BALE.K)F1 hybrids, dominant susceptibility to cysticercosis was observed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Behnke, J. M. & Wahid, F. N. (1991). Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): H-2 linked genes determine worm survival. Parasitology 103, 157–64.CrossRefGoogle ScholarPubMed
Blackwell, J. M., Freeman, J. & Bradley, D. (1980). Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature, London 283, 72–4.CrossRefGoogle ScholarPubMed
Blackwell, J. M. & Roberts, M. B. (1987). Immunomodulation of murine visceral leishmaniasis by administration of monoclonal anti I-A antibodies: differential effects of Anti I-A vs. anti I-E antibodies. European Journal of Immunology 17, 1669–72.CrossRefGoogle Scholar
Blackwell, J. M., Roberts, C. W. & Alexander, J. (1993). Influence of genes within the MHC on mortality and brain cyst development in mice infected with Toxoplasma gondii: kinetics of immune regulation in BALE H-2 congenic mice. Parasite Immunology 15, 317–24.CrossRefGoogle Scholar
Blankkenhorn, E. P., Wax, J. S., Matthai, R. & Potter, M. (1985). Genetic analysis of alphafetoprotein levels in BALB/c sublines. Current Topics in Microbiology and Immunology 122, 53–7.Google Scholar
Buller, R. M. C. (1985). The BALB/c mouse as a model to study Orthopoxviruses. Current Topics in Microbiology and Immunology 122, 148–53.Google Scholar
Carter, K. C., Baillie, A. J. & Alexander, J. (1993). Genetic control of drug-induced recovery from murine visceral leishmaniasis. Journal of Pharmacy and Pharmacology 45, 795–8.CrossRefGoogle ScholarPubMed
Del Brutto, O. H., Granados, G., Talamas, O., Sotelo, J. & Gorodezky, C. (1991). Genetic pattern of the HLA system: HLA, A, B, C, DR and DQ antigens in Mexican patients with parenchymal brain cysticercosis. Human Biology 63, 8593.Google Scholar
Else, K. & Wakelin, D. (1988). The effects of H-2 and non-H-2 genes on the expulsion of the nematode Trichuris muris from inbred and congenic mice. Parasitology 96, 543–50.CrossRefGoogle ScholarPubMed
Freeman, R. S. (1962). Studies on the biology of Taenia crassiceps (Zeder, 1800) Rudolphi, 1810 (Cestoda). Canadian Journal of Zoology 40, 969–90.CrossRefGoogle Scholar
Groves, M. G., Rosenstreich, D. L., Taylor, B. A. & Osterman, J. V. (1980). Host defenses in experimental scrub typhus: mapping the gene that controls natural resistance in mice. Journal of Immunology 125, 1395–9.CrossRefGoogle ScholarPubMed
Harder, A., Danneschewski, A. & Wünderlich, F. (1994). Genes of the mouse H-2 complex control the efficacy of testosterone to suppress immunity against the intestinal nematode Heterakis spumosa. Parasitology Research 80, 446–8.CrossRefGoogle ScholarPubMed
Huerta, L., Terrazas, L. I., Sciutto, E. & Larralde, C. (1992). Immunological mediation of gonadal effects on experimental murine cysticercosis caused by Taenia crassiceps metacestodes. Journal of Parasitology 78, 471–6.CrossRefGoogle Scholar
Ivanyi, P. J., Hampl, R., Mickova, M. & Starka, J. (1976). The influence of the H-2 system on blood serum testosterone level. Folia Biologica 22, 42–3.Google Scholar
Larralde, C., Sciutto, E., Grun, J., Diaz, M. L., Govezensky, T. & Montoya, R. M. (1989). Biological determinants of host–parasite relationship in mouse cysticercosis caused by Taenia crassiceps: influence of sex, major histocompatibility complex and vaccination. In Cysticercosis (ed. Cañedo, L. E., Todd, L. E., Packer, L. & Jaz, J.), pp. 325–32. New York: Plenum Publishing Corporation.Google ScholarPubMed
Lloyd, S. (1987). Cysticercosis. In Immune Responses in Parasitic Infections: Immunology, Immunopathology and Immunoprophylaxis. II (ed. Soulsby, E. J. L.), pp. 183212. Boca Raton, Florida: CRC Press.Google Scholar
Malo, D. & Skamene, E. (1994). Genetic control of host resistance to infection. Trends in Genetics 10, 365–70.CrossRefGoogle ScholarPubMed
Mellor, A. L., Antoniou, J. & Robinson, P. J. (1985). Structure and expression of genes encoding murine Qa-2 class I antigens. Proceedings of the National Academy of Sciences, USA 82, 5920–4.CrossRefGoogle ScholarPubMed
Mellor, A. L., Tomlinson, P. D., Antoniou, J., Chandler, P., Robinson, P., Felstein, M., Sloan, J., Edwards, A., O'Reilly, L., Cooke, A. & Simpson, E. (1991). Expression and function of Qa-2 major histocompatibility complex class I molecules in transgenic mice. International Immunology 3, 493502.CrossRefGoogle Scholar
Olsson, M., Lindahl, G. & Ruoslahti, E. (1977). Genetic control of alpha-fetoprotein synthesis in the mouse. Journal of Experimental Medicine 145, 819–27.CrossRefGoogle ScholarPubMed
Petit, G., Diagne, M., Marechal, P., Owen, D., Taylor, D. & Bain, O. (1992). Maturation of the filaria Litomosoides sigmodontis in BALB/c mice: comparative susceptibility of nine other inbred strains. Annales de Parasitologie Humaine et Comparée 67, 144–50.CrossRefGoogle ScholarPubMed
Potter, M. (1985). History of the BALB/c family. Current Topics in Microbiology and Immunology 122, 15.Google ScholarPubMed
Roderick, T. H., Langley, S. H. & Leiter, E. H. (1985). Genetic differences in BALB/c sublines. Current Topics in Microbiology and Immunology 122, 918.Google Scholar
Rotzschke, O., Falk, K., Stevanovic, S., Grahovac, B., Soloski, M. J., Jung, G. & Rammensee, H. G. (1993). Qa-2 molecules are peptide receptors of higher stringency than ordinary class I molecules. Nature, London 361, 642–4.CrossRefGoogle ScholarPubMed
Sciutto, E., Fragoso, G., Diaz, M., Valdez, F., Montoya, R. M., Govezensky, T., Lomeli, C. & Larralde, C. (1991). Murine Taenia crassiceps cysticercosis: H-2 complex and sex influence on susceptibility. Parasitology Research 77, 243–6.CrossRefGoogle ScholarPubMed
Sciutto, E., Fragoso, G., Trueba, L., Lemus, D., Montoya, R. M., Diaz, M., Govezensky, T., Lomeli, C., Tapia, G. & Larralde, C. (1990). Cysticercosis vaccine: cross protecting immunity with T. solium antigens against experimental murine T. crassiceps cysticercosis. Parasite Immunology 12, 687–96.CrossRefGoogle Scholar
Skamene, E. (1985). Susceptibility of BALB/c sublines to infection with Listeria monocytogenes. Current Topics in Microbiology and Immunology 122, 128–33.Google ScholarPubMed
Skamene, E., Gros, P., Forget, A., Kongshavn, P. A. L., Charles, C. & Taylor, B. A. (1982). Genetic regulation of resistance to intracellular pathogens. Nature, London 297, 506–9.CrossRefGoogle ScholarPubMed
Terrazas, L. I., Bojalil, R., Govezensky, T. & Larralde, C. (1994). A role for 17-β estradiol in immunoendocrine regulation of murine cysticercosis (Taenia crassiceps). Journal of Parasitology 80, 563–8.CrossRefGoogle ScholarPubMed
Trischmann, T. M. & Bloom, B. (1982). Genetics of murine resistance to Trypanosoma cruzi. Infection and Immunity 35, 546–51.CrossRefGoogle ScholarPubMed
Vadas, M. A. (1980). Parasite immunity and the major histocompatibility complex. Immunogenetics 11, 215–23.CrossRefGoogle ScholarPubMed
Wakelin, D. (1985). Genetic control of immunity to helminth infections. Parasitology Today 1, 1723.CrossRefGoogle ScholarPubMed
Wassom, D. L., Krco, C. J. & David, C. S. (1987). I-E suppression and susceptibility to parasite infection. Immunology Today 2, 3943.CrossRefGoogle Scholar
Williams, J. C., Sanchez, V., Scott, G. H., Stephenson, E. H. & Gibbs, P. H. (1985). Variation in responsiveness of BALB/c sublines and congenic mice to phase I Coxiella burnetii infection and vaccination. Current Topics in Microbiology and Immunology 122, 189–99.Google ScholarPubMed
Wünderlich, F., Mossman, H., Helwing, M. & Schillinger, G. (1988). Resistance to Plasmodium chabaudi in B10 mice: influence of H-2 complex and testosterone. Infection and Immunity 56, 2400–6.CrossRefGoogle ScholarPubMed