Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-13T08:01:29.975Z Has data issue: false hasContentIssue false

Genetic variation in mitochondrial DNA among Enterobius vermicularis in Denmark

Published online by Cambridge University Press:  20 August 2012

MARIO RODRİGUEZ FERRERO
Affiliation:
Department of Microbiological Diagnostics, Statens Serum Institut, Copenhagen, Denmark
DENNIS RÖSER*
Affiliation:
Department of Microbiological Diagnostics, Statens Serum Institut, Copenhagen, Denmark
HENRIK VEDEL NIELSEN
Affiliation:
Department of Microbiological Diagnostics, Statens Serum Institut, Copenhagen, Denmark
ANNETTE OLSEN
Affiliation:
University of Copenhagen, DBL-Centre for Health Research and Development, Frederiksberg C, Denmark
PETER NEJSUM
Affiliation:
University of Copenhagen, Department for Veterinary Disease Biology, Frederiksberg C, Denmark
*
*Corresponding author: Department of Microbiological Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark. Tel: +4532683604. Fax: +4532683033. Cell: +4540624066. E-mail: dsr@ssi.dk

Summary

Despite being the most prevalent nematode infections of man in Western Europe and North America, our knowledge of the genetic variability in Enterobius vermicularis is fragmented. We here report on a genetic study of pinworms in Denmark, performed using the cytochrome oxidase I (cox1) gene, with DNA extracted from individual eggs collected from clinical (human) samples. We collected cellophane-tape-test samples positive for pinworm eggs from 14 Departments of Clinical Microbiology in Denmark and surface-sterilized the eggs using a 1% hypochlorite solution before performing conventional PCR. Twenty-two haplotypes were identified from a total of 58 Danish patients. Cluster analysis showed that all Danish worms grouped together with human samples from Germany and Greece and with samples from Japanese chimpanzees designated as ‘type B’. Analysis of molecular variance showed no significant difference or trends in geographical distribution of the pinworms in Denmark, and several haplotypes were identical or closely related to samples collected in Germany, Greece and Japan. However, worms from the 4 countries were found to belong to different populations, with Fst values in the range of 0·16 to 0·47. This study shows pinworms in Denmark to be a homogenous population, when analysed using the cox1 mitochondrial gene.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blouin, M. S. (2002). Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. International Journal for Parasitology 32, 527531.CrossRefGoogle ScholarPubMed
Blouin, M. S., Yowell, C. A., Courtney, C. H. and Dame, J. B. (1998). Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Molecular Biology and Evolution 15, 17191727.CrossRefGoogle ScholarPubMed
Carlsgart, J., Roepstorff, A. and Nejsum, P. (2009). Multiplex PCR on single unembryonated Ascaris (roundworm) eggs. Parasitology Research 104, 939943.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G. and Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
Excoffier, L., Smouse, P. E. and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.CrossRefGoogle ScholarPubMed
Felsenstein, F. (1985). Confidence limits on phylogenies: an approach using the Bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Garcia, L. S. (2001). Diagnostic Medical Parasitology. 4th Edn.ASM Press, Washington D.C., USA.Google Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hawkins, C. L. and Davies, M. J. (2002). Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals. Chemical Research in Toxicology 15, 8392.CrossRefGoogle ScholarPubMed
Kang, S., Sultana, T., Eom, K. S., Park, Y. C., Soonthornpong, N., Nadler, S. A. and Park, J. K. (2009). The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)–an idiosyncratic gene order and phylogenetic information for chromadorean nematodes. Gene 429, 8797.CrossRefGoogle ScholarPubMed
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Lacroix, M. and Sorensen, B. (2000). Occurrence of Enterobius vermicularis in children hospitalized at a central hospital. Ugeskrift for Laeger 162, 12361238.Google Scholar
McDonnell, A., Love, S., Tait, A., Lichtenfels, J. R. and Matthews, J. B. (2000). Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I and large ribosomal RNA sequences and nuclear internal transcribed spacer I sequences from species of Cyathostominae and Strongylinae (Nematoda, Order Strongylida), parasites of the horse. Parasitology 121, 649659.CrossRefGoogle ScholarPubMed
Nakano, T., Okamoto, M., Ikeda, Y. and Hasegawa, H. (2006). Mitochondrial cytochrome c oxidase subunit 1 gene and nuclear rDNA regions of Enterobius vermicularis parasitic in captive chimpanzees with special reference to its relationship with pinworms in humans. Parasitology Research 100, 5157.CrossRefGoogle ScholarPubMed
Nejsum, P., Bertelsen, M. F., Betson, M., Stothard, J. R. and Murrell, K. D. (2010). Molecular evidence for sustained transmission of zoonotic Ascaris suum among zoo chimpanzees (Pan troglodytes). Veterinary Parasitology 171, 273276.CrossRefGoogle ScholarPubMed
Piperaki, E. T., Spanakos, G., Patsantara, G., Vassalou, E., Vakalis, N. and Tsakris, A. (2011). Characterization of Enterobius vermicularis in a human population, employing a molecular-based method from adhesive tape samples. Molecular and Cellular Probes 25, 121125.CrossRefGoogle Scholar
Roberts, L. and Janovy, J. (2009). Schmidt and Roberts' Foundations of Parasitology. McGraw-Hill, New York, USA.Google Scholar
Rozen, S. and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology 132, 365386.Google ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Traversa, D., Kuzmina, T., Kharchenko, V. A., Iorio, R., Klei, T. R. and Otranto, D. (2008). Haplotypic variability within the mitochondrial gene encoding for the cytochrome c oxidase 1 (cox1) of Cylicocyclus nassatus (Nematoda, Strongylida): evidence for an affiliation between parasitic populations and domestic and wild equid hosts. Veterinary Parasitology 156, 241247.CrossRefGoogle ScholarPubMed
Zelck, U. E., Bialek, R. and Weiss, M. (2011). Molecular phylogenetic analysis of Enterobius vermicularis and development of an 18S ribosomal DNA-targeted diagnostic PCR. Journal of Clinical Microbiology 49, 16021604.CrossRefGoogle ScholarPubMed