Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T23:24:15.519Z Has data issue: false hasContentIssue false

Novel genotype of Tritrichomonas foetus from cattle in Southern Africa

Published online by Cambridge University Press:  09 September 2016

ANDREA CASTERIANO
Affiliation:
School of Life and Environmental Sciences, Faculty of Veterinary Science, The University of Sydney, McMaster Building B14, New South Wales 2006, Australia
UMBERTO MOLINI
Affiliation:
Central Veterinary Laboratory, 24 Goethe Street, Windhoek, Namibia
KORNELIA KANDJUMBWA
Affiliation:
Central Veterinary Laboratory, 24 Goethe Street, Windhoek, Namibia
SIEGFRIED KHAISEB
Affiliation:
Central Veterinary Laboratory, 24 Goethe Street, Windhoek, Namibia
CAROLINE F. FREY
Affiliation:
Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
JAN ŠLAPETA*
Affiliation:
School of Life and Environmental Sciences, Faculty of Veterinary Science, The University of Sydney, McMaster Building B14, New South Wales 2006, Australia
*
*Corresponding author: School of Life and Environmental Sciences, Faculty of Veterinary Science, The University of Sydney, McMaster Building B14, New South Wales 2006, Australia. E-mail: jan.slapeta@sydney.edu.au

Summary

Bovine trichomonosis caused by Tritrichomonas foetus is a significant reproductive disease of cattle. Preputial samples were collected using sheath washing technique in bulls in Namibia. Thirty-six trichomonad cultures were characterized using the TaqMan-probe commercial real-time polymerase chain reaction (PCR) diagnostic assay (VetMAX™-Gold Trich Detection Kit) and CYBR real-time PCR assay based on TFR3/4 primers. Diagnostic real-time PCRs and DNA sequencing of the internal transcribed region confirmed presence of T. foetus in 35 out of 36 samples. Multilocus genotyping using cysteine proteases (CP1, CP2, CP4, CP5, CP6, CP7, CP8, CP9) and malate dehydrogenase (MDH1) gene sequences demonstrate that the T. foetus in Namibia are genetically distinct from those characterized elsewhere. We report the discovery of a novel genotype of T. foetus in Namibian cattle, distinct from other T. foetus genotypes in Europe, South and North America and Australia. We suggest recognition of a ‘Southern African’ genotype of T. foetus. Identification of the new genotype of T. foetus demonstrates the need for wider global sampling to fully understand the diversity and origin of T. foetus causing disease in cattle or cats.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arranz-Solís, D., Pedraza-Díaz, S., Miró, G., Rojo-Montejo, S., Hernández, L., Ortega-Mora, L. M. and Collantes-Fernández, E. (2016). Tritrichomonas foetus infection in cats with diarrhea from densely housed origins. Veterinary Parasitology 221, 118122.Google Scholar
Baltzell, P., Newton, H. and O'Connor, A. M. (2013). A critical review and meta-analysis of the efficacy of whole-cell killed Tritrichomonas foetus vaccines in beef cattle. Journal of Veterinary Internal Medicine 27, 760770.Google Scholar
BonDurant, R. H. (1997). Pathogenesis, diagnosis, and management of trichomoniasis in cattle. Veterinary Clinics of North America-Food Animal Practice 13, 345361.Google Scholar
Doi, J., Abe, N. and Oku, Y. (2013). Molecular survey of Tritrichomonas suis (=T. foetus) ‘cat’ and ‘cattle’ genotypes in pigs in Japan. Journal of Veterinary Medical Science 75, 475479.Google Scholar
Felleisen, R. S. J. (1997). Comparative sequence analysis of 5·8S rRNA genes and internal transcribed spacer (ITS) regions of trichomonadid protozoa. Parasitology 115, 111119.CrossRefGoogle ScholarPubMed
Felleisen, R. S. J., Lambelet, N., Bachmann, P., Nicolet, J., Muller, N. and Gottstein, B. (1998). Detection of Tritrichomonas foetus by PCR and DNA enzyme immunoassay based on rRNA gene unit sequences. Journal of Clinical Microbiology 36, 513519.Google Scholar
Huson, D. H. and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254267.Google Scholar
Irons, P., Henton, M. and Bertschinger, H. (2002). Collection of preputial material by scraping and aspiration for the diagnosis of Tritrichomonas foetus in bulls. Journal of the South African Veterinary Association 73, 6669.Google Scholar
Levy, M. G., Gookin, J. L., Poore, M., Birkenheuer, A. J., Dykstra, M. J. and Litaker, R. W. (2003). Tritrichomonas foetus and not Pentatrichomonas hominis is the etiologic agent of feline trichomonal diarrhea. Journal of Parasitology 89, 99104.Google Scholar
Madoroba, E., Gelaw, A., Hlokwe, T. and Mnisi, M. (2011). Prevalence of Campylobacter foetus and Trichomonas foetus among cattle from Southern Africa. African Journal of Biotechnology 10, 1031110314.Google Scholar
Morin-Adeline, V., Lomas, R., O'Meally, D., Stack, C., Conesa, A. and Šlapeta, J. (2014). Comparative transcriptomics reveal striking similarities between the bovine and feline Tritrichomonas foetus: consequences for in silico drug-target identification. BMC Genomics 15, 955.Google Scholar
Morin-Adeline, V., Mueller, K., Conesa, A. and Šlapeta, J. (2015). Comparative RNA-seq analysis of the Tritrichomonas foetus PIG30/1 isolate from pigs reveals close association with Tritrichomonas foetus BP-4 isolate ‘bovine genotype’. Veterinary Parasitology 212, 111117.Google Scholar
Mueller, K., Morin-Adeline, V., Gilchrist, K., Brown, G. and Šlapeta, J. (2015). High prevalence of Tritrichomonas foetus ‘bovine genotype’ in faecal samples from domestic pigs at a farm where bovine trichomonosis has not been reported for over 30 years. Veterinary Parasitology 212, 105110.Google Scholar
Ondrak, J. D. (2016). Tritrichomonas foetus prevention and control in cattle. Veterinary Clinics of North America-Food Animal Practice 32, 411423.Google Scholar
Pefanis, S. M., Herr, S., Venter, C. G., Kruger, L. P., Queiroga, C. C. and Amaral, L. (1988). Trichomoniasis and campylobacteriosis in bulls in the Republic of Transkei. Journal of the South African Veterinary Association 59, 139140.Google Scholar
Šlapeta, J., Craig, S., McDonell, D. and Emery, D. (2010). Tritrichomonas foetus from domestic cats and cattle are genetically distinct. Experimental Parasitology 126, 209213.Google Scholar
Šlapeta, J., Müller, N., Stack, C. M., Walker, G., Lew-Tabor, A., Tachezy, J. and Frey, C. F. (2012). Comparative analysis of Tritrichomonas foetus (Riedmuller, 1928) cat genotype, T. foetus (Riedmuller, 1928) cattle genotype and Tritrichomonas suis (Davaine, 1875) at 10 DNA loci. International Journal for Parasitology 42, 11431149.Google Scholar
Stockdale, H., Rodning, S., Givens, M., Carpenter, D., Lenz, S., Spencer, J., Dykstra, C., Lindsay, D. and Blagburn, B. (2007). Experimental infection of cattle with a feline isolate of Tritrichomonas foetus . Journal of Parasitology 93, 14291434.CrossRefGoogle ScholarPubMed
Stockdale, H. D., Dillon, A. R., Newton, J. C., Bird, R. C., Bondurant, R. H., Deinnocentes, P., Barney, S., Bulter, J., Land, T., Spencer, J. A., Lindsay, D. S. and Blagburn, B. L. (2008). Experimental infection of cats (Felis catus) with Tritrichomonas foetus isolated from cattle. Veterinary Parasitology 154, 156161.Google Scholar
Sun, Z., Stack, C. and Šlapeta, J. (2012). Sequence differences in the diagnostic region of the cysteine protease 8 gene of Tritrichomonas foetus parasites of cats and cattle. Veterinary Parasitology 186, 445449.Google Scholar
Suzuki, J., Kobayashi, S., Osuka, H., Kawahata, D., Oishi, T., Sekiguchi, K., Hamada, A. and Iwata, S. (2016). Characterization of a human isolate of Tritrichomonas foetus (cattle/swine genotype) infected by a zoonotic opportunistic infection. Journal of Veterinary Medical Science 78, 633640.Google Scholar
Tolbert, M. K., Stauffer, S. H. and Gookin, J. L. (2013). Feline Tritrichomonas foetus adhere to intestinal epithelium by receptor-ligand-dependent mechanisms. Veterinary Parasitology 192, 7582.Google Scholar
Tolbert, M. K., Stauffer, S. H., Brand, M. D. and Gookin, J. L. (2014). Cysteine protease activity of feline Tritrichomonas foetus promotes adhesion-dependent cytotoxicity to intestinal epithelial cells. Infection and Immunity 82, 28512859.Google Scholar