Hostname: page-component-76dd75c94c-nbtfq Total loading time: 0 Render date: 2024-04-30T09:11:41.278Z Has data issue: false hasContentIssue false

Novel trypanosome Trypanosoma gilletti sp. (Euglenozoa: Trypanosomatidae) and the extension of the host range of Trypanosoma copemani to include the koala (Phascolarctos cinereus)

Published online by Cambridge University Press:  21 July 2010

L. M. McINNES*
Affiliation:
Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Perth, WA 6150, Australia
J. HANGER
Affiliation:
The Australian Wildlife Hospital, Beerwah, Qld 4519, Australia
G. SIMMONS
Affiliation:
School of Veterinary Science, University of Queensland, St Lucia, Qld 4072, Australia
S. A. REID
Affiliation:
Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Perth, WA 6150, Australia
U. M. RYAN
Affiliation:
Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Perth, WA 6150, Australia
*
*Corresponding author: Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Perth, WA 6150, Australia. Tel: +61 893602495. Fax: +61 893104144. E-mail: LindaMMcInnes@gmail.com

Summary

Trypanosoma irwini was previously described from koalas and we now report the finding of a second novel species, T. gilletti, as well as the extension of the host range of Trypanosoma copemani to include koalas. Phylogenetic analysis at the 18S rDNA and gGAPDH loci demonstrated that T. gilletti was genetically distinct with a genetic distance (±s.e.) at the 18S rDNA locus of 2·7±0·5% from T. copemani (wombat). At the gGAPDH locus, the genetic distance (±s.e.) of T. gilletti was 8·7±1·1% from T. copemani (wombat). Trypanosoma gilletti was detected using a nested trypanosome 18S rDNA PCR in 3/139 (∼2%) blood samples and in 2/29 (∼7%) spleen tissue samples from koalas whilst T. irwini was detected in 72/139 (∼52%) blood samples and T. copemani in 4/139 (∼3%) blood samples from koalas. In addition, naturally occurring mixed infections were noted in 2/139 (∼1·5%) of the koalas tested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716723.Google Scholar
Anez, N. (1982). Studies on Trypanosoma rangeli Tejera, 1920. IV-A reconsideration of its systematic position. Memorias do Instituto Oswaldo Cruz 77, 405415.CrossRefGoogle ScholarPubMed
Anisimova, M. and Gascuel, O. (2006). Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Systematic Biology 55, 539552.CrossRefGoogle Scholar
Austen, J., Jefferies, R., Friend, T., Adams, P., Ryan, U. and Reid, S. (2009). Morphological and molecular characterization of Trypanosoma copemani n.sp. (Trypanosomatidae) isolated from Gilbert's potoroo (Potorous gilbertii) and quokka (Setonix brachyurus). Parasitology 136, 783792.Google Scholar
Averis, S., Thompson, R. C., Lymbery, A. J., Wayne, A. F., Morris, K. D. and Smith, A. (2009). The diversity, distribution and host-parasite associations of trypanosomes in Western Australian wildlife. Parasitology 136, 12691279.CrossRefGoogle ScholarPubMed
Bettiol, S. S., Goldsmid, J. M., Le, D. D. and Driessen, M. (1996). The first record of a member of the genus Hepatozoon in the eastern barred bandicoot (Perameles gunnii) in Tasmania. Journal of Parasitology 82, 829830.CrossRefGoogle ScholarPubMed
Bettiol, S. S., Jakes, K., Le, D. D., Goldsmid, J. M. and Hocking, G. (1998). First record of trypanosomes in Tasmanian bandicoots. Journal of Parasitology 84, 538541.CrossRefGoogle ScholarPubMed
Burleigh, B. A. and Andrews, N. W. (1995). The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annual Review of Microbiology 49, 175200.CrossRefGoogle ScholarPubMed
Da Silva, F. M., Noyes, H., Campaner, M., Junqueira, A. C., Coura, J. R., Anez, N., Shaw, J. J., Stevens, J. R. and Teixeira, M. M. (2004). Phylogeny, taxonomy and grouping of Trypanosoma rangeli isolates from man, triatomines and sylvatic mammals from widespread geographical origin based on SSU and ITS ribosomal sequences. Parasitology 129, 549561.CrossRefGoogle ScholarPubMed
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M. and Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36, W465469.Google Scholar
el Kady, G. A. (1998). Protozoal parasites in tick species infesting camels in Sinai Peninsula. Journal of the Egyptian Society of Parasitology 28, 765776.Google Scholar
Franco, D. J., Vago, A. R., Chiari, E., Meira, F. C., Galvao, L. M. and Machado, C. R. (2003). Trypanosoma cruzi: mixture of two populations can modify virulence and tissue tropism in rat. Experimental Parasitology 104, 5461.CrossRefGoogle ScholarPubMed
Gibson, W. (2009). Species-specific probes for the identification of the African tsetse-transmitted trypanosomes. Parasitology 136, 15011507.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Gibson, W. C. and Stevens, J. R. (2007). Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Molecular Phylogenetics and Evolution 44, 1525.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Stevens, J. R., Gaunt, M. W., Gidley, J. and Gibson, W. C. (2004). Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. International Journal for Parasitology 34, 13931404.Google Scholar
Hamilton, P. B., Stevens, J. R., Gidley, J., Holz, P. and Gibson, W. C. (2005). A new lineage of trypanosomes from Australian vertebrates and terrestrial bloodsucking leeches (Haemadipsidae). International Journal for Parasitology 35, 431443.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1972). The Trypanosomes of Mammals. A Zoological Monograph, Blackwell Scientific Publications, Oxford, UK.Google Scholar
Jackson, S., Reid, K., Spittal, D. and Romer, L. (2003). Koalas. In Australian Mammals: Biology and Captive Management (ed. Jackson, , , S.), pp. 145181. CSIRO Publishing, Collingwood, Victoria, Australia.Google Scholar
Jukes, T. and Cantor, C. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism (ed. Manro, , , H. N. and Allison, , , J. B.), pp. 2132. Academic Press, New York, USA.CrossRefGoogle Scholar
Lainson, R., Da Silva, F. M. and Franco, C. M. (2008). Trypanosoma (Megatrypanum) saloboense n. sp. (Kinetoplastida: Trypanosomatidae) parasite of Monodelphis emiliae (Marsupiala: Didelphidae) from Amazonian Brazil. Parasite 15, 99103.CrossRefGoogle Scholar
Lanave, C., Preparata, G., Saccone, C. and Serio, G. (1984). A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20, 8693.CrossRefGoogle ScholarPubMed
Latif, A. A., Bakheit, M. A., Mohamed, A. E. and Zweygarth, E. (2004). High infection rates of the tick Hyalomma anatolicum anatolicum with Trypanosoma theileri. Onderstepoort Journal of Veterinary Research 71, 251256.CrossRefGoogle ScholarPubMed
Mackerras, M. (1959). The haematozoa of Australian mammals. Australian Journal of Zoology 7, 105135.CrossRefGoogle Scholar
Martins, H. R., Toledo, M. J., Veloso, V. M., Carneiro, C. M., Machado-Coelho, G. L., Tafuri, W. L., Bahia, M. T., Valadares, H. M., Macedo, A. M. and Lana, M. (2006). Trypanosoma cruzi: Impact of dual-clone infections on parasite biological properties in BALB/c mice. Experimental Parasitology 112, 237246.CrossRefGoogle ScholarPubMed
Maslov, D. A., Lukes, J., Jirku, M. and Simpson, L. (1996). Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Molecular and Biochemical Parasitology 75, 197205.CrossRefGoogle ScholarPubMed
McInnes, L. M., Gillett, A., Ryan, U. M., Austen, J., Campbell, R. S., Hanger, J. and Reid, S. A. (2009). Trypanosoma irwini n. sp (Sarcomastigophora: Trypanosomatidae) from the koala (Phascolarctos cinereus). Parasitology 136, 875885.Google Scholar
McMillan, B. and Bancroft, B. (1974). On the morphology of Trypanosoma binneyi Mackerras, 1959 from the platypus Ornithorhyncus anatinus. International Journal for Parasitology 4, 441442.Google Scholar
Nei, M. and Kumar, S. (2000). Molecular Evolution and Phylogenetics, Oxford University Press, Inc., New York, USA.CrossRefGoogle Scholar
Noyes, H. A., Stevens, J. R., Teixeira, M., Phelan, J. and Holz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. International Journal for Parasitology 29, 331339.CrossRefGoogle ScholarPubMed
Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Roberts, F. (1970). Australian Ticks. Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia.Google Scholar
Schnittger, L., Yin, H., Gubbels, M. J., Beyer, D., Niemann, S., Jongejan, F. and Ahmed, J. S. (2003). Phylogeny of sheep and goat Theileria and Babesia parasites. Parasitology Research 91, 398406.Google Scholar
Smith, A., Clark, P., Averis, S., Lymbery, A. J., Wayne, A. F., Morris, K. D. and Thompson, R. C. (2008). Trypanosomes in a declining species of threatened Australian marsupial, the brush-tailed bettong Bettongia penicillata (Marsupialia: Potoroidae). Parasitology 135, 13291335.Google Scholar
Stevens, J., Noyes, H. and Gibson, W. (1998). The evolution of trypanosomes infecting humans and primates. Memorias do Instituto Oswaldo Cruz 93, 669676.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.Google Scholar
Thekisoe, O. M., Honda, T., Fujita, H., Battsetseg, B., Hatta, T., Fujisaki, K., Sugimoto, C. and Inoue, N. (2007). A trypanosome species isolated from naturally infected Haemaphysalis hystricis ticks in Kagoshima Prefecture, Japan. Parasitology 134, 967974.Google Scholar
Viola, L. B., Almeida, R. S., Ferreira, R. C., Campaner, M., Takata, C. S., Rodrigues, A. C., Paiva, F., Camargo, E. P. and Teixeira, M. M. (2009). Evolutionary history of trypanosomes from South American caiman (Caiman yacare) and African crocodiles inferred by phylogenetic analyses using SSU rDNA and gGAPDH genes. Parasitology 136, 5565.CrossRefGoogle ScholarPubMed
Xiao, L., Fayer, R., Ryan, U. and Upton, S. J. (2004). Cryptosporidium taxonomy: recent advances and implications for public health. Clinical Microbiology Reviews 17, 7297.CrossRefGoogle ScholarPubMed
Ziccardi, M. and Lourenco-de-Oliveira, R. (1999). Polymorphism in trypomastigotes of Trypanosoma (Megatrypanum) minasense in the blood of experimentally infected squirrel monkey and marmosets. Memorias do Instituto Oswaldo Cruz 94, 649653.Google Scholar
Zintl, A., Voorheis, H. P. and Holland, C. V. (2000). Experimental infections of farmed eels with different Trypanosoma granulosum life-cycle stages and investigation of pleomorphism. Journal of Parasitology 86, 5659.CrossRefGoogle ScholarPubMed