Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T21:01:59.343Z Has data issue: false hasContentIssue false

Obligate larval inhibition of Ostertagia gruehneri in Rangifer tarandus? Causes and consequences in an Arctic system

Published online by Cambridge University Press:  06 September 2012

BRYANNE M. HOAR*
Affiliation:
Department of Biological Sciences, University of Calgary, Calgary, Canada Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
ALEXANDER G. EBERHARDT
Affiliation:
Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada Kriminaltechnisches Institut, Landeskriminalamt Baden-Württemberg, Germany
SUSAN J. KUTZ
Affiliation:
Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
*
*Corresponding author: 3350 Hospital Dr NW, Calgary, AB, CanadaT2N 4N1. Tel: +1 902 217 6468. E-mail: bmhoar@ucalgary.ca

Summary

Larval inhibition is a common strategy of Trichostrongylidae nematodes that may increase survival of larvae during unfavourable periods and concentrate egg production when conditions are favourable for development and transmission. We investigated the propensity for larval inhibition in a population of Ostertagia gruehneri, the most common gastrointestinal Trichostrongylidae nematode of Rangifer tarandus. Initial experimental infections of 4 reindeer with O. gruehneri sourced from the Bathurst caribou herd in Arctic Canada suggested that the propensity for larval inhibition was 100%. In the summer of 2009 we infected 12 additional reindeer with the F1 and F2 generations of O. gruehneri sourced from the previously infected reindeer to further investigate the propensity of larval inhibition. The reindeer were divided into 2 groups and half were infected before the summer solstice (17 June) and half were infected after the solstice (16 July). Reindeer did not shed eggs until March 2010, i.e. 8 and 9 months post-infection. These results suggest obligate larval inhibition for at least 1 population of O. gruehneri, a phenomenon that has not been conclusively shown for any other trichostrongylid species. Obligate inhibition is likely to be an adaptation to both the Arctic environment and to a migratory host and may influence the ability of O. gruehneri to adapt to climate change.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almeria, S., Llorente, M. M. and Uriarte, J. (1996). Monthly fluctuations of worm burdens and hypobiosis of gastrointestinal nematodes of calves in extensive management systems in the Pyrenees (Spain). Veterinary Parasitology 67, 225236.CrossRefGoogle ScholarPubMed
Armour, J. and Duncan, M. (1987). Arrested larval development in cattle nematodes. Parasitology Today 3, 171176.CrossRefGoogle ScholarPubMed
Arneberg, P. and Folstad, I. (1999). Predicting effects of naturally acquired abomasal nematode infections on growth rate and food intake in reindeer using serum pepsinogen levels. Journal of Parasitology 85, 367369.CrossRefGoogle ScholarPubMed
Arneberg, P., Folstad, I. and Karter, A. J. (1996). Gastrointestinal nematodes depress food intake in naturally infected reindeer. Parasitology 112, 213219.CrossRefGoogle ScholarPubMed
Belem, A. M. G., Couvillon, C. E., Siefker, C. and Griffin, R. N. (1993). Evidence for arrested development of abomasal nematodes in white-tailed deer. Journal of Wildlife Diseases 29, 261265.CrossRefGoogle ScholarPubMed
Borgsteede, F. H. M. and Eysker, M. (1987). Strains of cattle parasites in the Netherlands with different propensities for inhibited development. Veterinary Parasitology 24, 93102.CrossRefGoogle ScholarPubMed
Bye, K. and Halvorsen, O. (1983). Abomasal nematodes of the Svalbard reindeer Rangifer tarandus-platyrhynchus . Journal of Wildlife Diseases 19, 101105.CrossRefGoogle ScholarPubMed
Capitini, L. A., McClure, K. E. and Herd, R. P. (1990). Effect of environmental stimuli on pre-infective and infective stages of Haemonchus contortus in the Northern United States for the induction of hypobiosis. Veterinary Parasitology 35, 281293.CrossRefGoogle ScholarPubMed
Cattadori, I. M., Boag, B., Bjornstad, O. N., Cornell, S. J. and Hudson, P. J. (2005). Peak shift and epidemiology in a seasonal host-nematode system. Proceedings of the Royal Society of London, 272, 11631169.Google Scholar
Chiejina, S. N., Fakae, B. B. and Eze, B. O. (1988). Arrested development of gastrointestinal trichostrongylids in goats in Nigeria. Veterinary Parasitology 28, 103114.CrossRefGoogle ScholarPubMed
Connan, R. M. (1971). The seasonal incidence of inhibition of development in Haemonchus contortus . Research in Veterinary Science 12, 272274.CrossRefGoogle ScholarPubMed
Dallas, J. F., Irvine, R. J. and Halvorsen, O. (2000 a). DNA evidence that Ostertagia gruehneri and Ostertagia arctica (Nematoda: Ostertagiinae) in reindeer from Norway and Svalbard are conspecific. International Journal for Parasitology 30, 655658.CrossRefGoogle ScholarPubMed
Dallas, J. F., Irvine, R. J., Halvorsen, O. and Albon, S. D. (2000 b). Identification by polymerase chain reaction (PCR) of Marshallagia marshalli and Ostertagia gruehneri from Svalbard reindeer. International Journal for Parasitology 30, 863866.CrossRefGoogle ScholarPubMed
De Bruyn, N. P. (2010). Gastrointestinal nematodes of Western Canadian cervids: molecular diagnostics, faunal baselines and management considerations. M.Sc. University of Calgary, Calgary, Canada.Google Scholar
Delahay, R. J. and Moss, R. (1996). Food intake, weight changes and egg production in captive red grouse before and during laying: Effects of the parasitic nematode Trichostrongylus tenuis . Condor 98, 501511.CrossRefGoogle Scholar
Dobson, A. and Roberts, M. (1994). The population dynamics of parasitic helminth communities. Parasitology 109, S97S108.CrossRefGoogle ScholarPubMed
Eberhardt, A. G., Mayer, W. E. and Streit, A. (2007). The free-living generation of the nematode Strongyloides papillosus undergoes sexual reproduction. International Journal for Parasitology 37, 9891000.CrossRefGoogle ScholarPubMed
Egwang, T. G. and Slocombe, J. O. D. (1982). Evaluation of the Cornell Wisconsin centrifugal flotation technique for recovering trichostrongylid eggs from bovine feces. Canadian Journal of Comparative Medicine 46, 133137.Google ScholarPubMed
Eysker, M. (1993). The role of inhibited development in the epidemiology of Ostertagia infections. Veterinary Parasitology 46, 259269.CrossRefGoogle ScholarPubMed
Eysker, M. (1997). Some aspects of inhibited development of trichostrongylids in ruminants. Veterinary Parasitology 72, 265272.CrossRefGoogle ScholarPubMed
Fenton, A. and Hudson, P. J. (2002). Optimal infection strategies: should macroparasites hedge their bets? Oikos 96, 92101.CrossRefGoogle Scholar
Giangaspero, M., Bahhady, F. A., Orita, G. and Gruner, L. (1992). Summer-arrested development of abomasal trichostrongylids in Awassi sheep in semi-arid areas of Northwest Syria. Parasitology Research 78, 594597.CrossRefGoogle Scholar
Hoar, B. M., Oakley, M., Farnell, R. and Kutz, S. J. (2009). Biodiversity and springtime patterns of egg production and development for parasites of the Chisana Caribou herd, Yukon Territory, Canada. Rangifer 29, 2537.CrossRefGoogle Scholar
Hrabok, J. T., Oksanen, A., Nieminen, A. and Waller, P. J. (2006 a). Population dynamics of nematode parasites of reindeer in the sub-arctic. Veterinary Parasitology 142, 301311.CrossRefGoogle ScholarPubMed
Hrabok, J. T., Oksanen, A., Nieminen, M., Rydzik, A., Uggla, A. and Waller, P. J. (2006 b). Reindeer as hosts for nematode parasites of sheep and cattle. Veterinary Parasitology 136, 297306.CrossRefGoogle ScholarPubMed
Hrabok, J. T., Oksanen, A., Nieminen, M. and Waller, P. J. (2007). Prevalence of gastrointestinal nematodes in winter slaughtered reindeer of northern Finland. Rangifer 27, 133139.CrossRefGoogle Scholar
Hubert, J. and Kerboeuf, D. (1984). A new method for culture of larvae used in diagnosis of ruminant gastro intestinal strongylosis comparison with fecal cultures. Canadian Journal of Comparative Medicine 48, 6371.Google Scholar
Hudson, P. J., Cattadori, M., Boag, B. and Dobson, A. P. (2006). Climate disruption and parasite-host dynamics: patterns and processes associated with warming and the frequency of extreme climatic events. Journal of Helminthology 80, 175182.CrossRefGoogle ScholarPubMed
Irvine, R. J., Stien, A., Halvorsen, O., Langvatn, R. and Albon, S. D. (2000). Life-history strategies and population dynamics of abomasal nematodes in Svalbard reindeer (Rangifer tarandus platyrhynchus). Parasitology 120, 297311.CrossRefGoogle ScholarPubMed
Kutz, S., Ducrocq, J., Verocai, G., Hoar, B., Colwell, D., Beckmen, K., Polley, L., Elkin, B. and Hoberg, E. (2012). Parasites in ungulates of Arctic North America and Greenland: a view of contemporary diversity, ecology, and impact in a world under change. Advances in Parasitology (in the Press).CrossRefGoogle Scholar
Leader-Williams, N. (1980). Observations on the internal parasites of reindeer introduced into South Georgia. Veterinary Record 107, 393395.CrossRefGoogle ScholarPubMed
Miller, H. R. P. (1984). The protective mucosal response against gastrointestinal nematodes in ruminants and laboratory animals. Veterinary Immunology and Immunopathology 6, 167259.CrossRefGoogle ScholarPubMed
O'Connor, L. J., Walkden-Brown, S. W. and Kahn, L. P. (2006). Ecology of the free-living stages of major trichostrongylid parasites of sheep. Veterinary Parasitology 142, 115.CrossRefGoogle ScholarPubMed
Ogunsusi, R. A. and Eysker, M. (1979). Inhibited development of trichostrongylids of sheep in Northern Nigeria. Research in Veterinary Science 26, 108110.CrossRefGoogle ScholarPubMed
Shaw, J. L. (1988). Arrested development of Trichostrongylus tenuis as third stage larvae in red grouse. Research in Veterinary Science 45, 256258.CrossRefGoogle ScholarPubMed
Sim, K. A., Hoar, B., Kutz, S. J. and Chilton, N. B. (2010). Amplification of the second internal transcribed spacer ribosomal DNA of individual trichostrongylid nematode larvae by nested polymerase chain reaction. Journal of Veterinary Diagnostic Investigation 22, 433437.CrossRefGoogle ScholarPubMed
Sommerville, R. I. and Davey, K. G. (2002). Diapause in parasitic nematodes: a review. Canadian Journal of Zoology 80, 18171840.CrossRefGoogle Scholar
Stien, A., Irvine, R. J., Ropstad, E., Halvorsen, O., Langvatn, R. and Albon, S. D. (2002). The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. Journal of Animal Ecology 71, 937945.CrossRefGoogle Scholar
Stromberg, B. E. (1997). Environmental factors influencing transmission. Veterinary Parasitology 72, 247264.CrossRefGoogle ScholarPubMed
Waller, P. J., Rudby-Martin, L., Ljungstrom, B. L. and Rydzik, A. (2004). The epidemiology of abomasal nematodes of sheep in Sweden, with particular reference to over-winter survival strategies. Veterinary Parasitology 122, 207220.CrossRefGoogle ScholarPubMed
Waller, P. J. and Thomas, R. J. (1975). Field studies on inhibition of Haemonchus contortus in sheep. Parasitology 71, 285291.CrossRefGoogle Scholar