Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T12:54:29.987Z Has data issue: false hasContentIssue false

The practicality and sustainability of vaccination as an approach to parasite control

Published online by Cambridge University Press:  06 April 2009

D. A. P. Bundy
Affiliation:
Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS
M. S. Chan
Affiliation:
Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS
H. L. Guyatt
Affiliation:
Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS

Summary

The development of a successful vaccine depends not only on the production of the vaccine itself, but also on the design of the vaccination programme. This involves a better understanding of the epidemiology of the disease to be controlled, the delivery system to be used and the costs involved. This review focuses on current understanding of parasite population dynamics and epidemiology, and on the logistic experience gained from immunization programmes using existing viral and bacterial vaccines. The feasibility and sustainability of any new vaccine would greatly benefit from research into epidemiology and health systems which are conducted in parallel, rather than sequential to, vaccine development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M. (1992). The concept of herd immunity and the design of community-based immunization programmes. Vaccine 10, 928–35.CrossRefGoogle ScholarPubMed
Anderson, R. M., Jackson, H. C., May, R. M. & Smith, A. D. M. (1981). Population dynamics of fox rabies in Europe. Nature 289, 765–71.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1979). Population biology of infectious diseases. Part 1. Nature 280, 361–7.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1985 a). Herd immunity to helminth infection and implications for parasite control. Nature 315, 493–6.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1985 b). Vaccination and herd immunity to infectious diseases. Nature 318, 323–9.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.CrossRefGoogle Scholar
Ballou, W. R., Blood, J., Chongsuphajaissidhi, T., Gordon, D. M., Heppner, D. G., Kyle, D. E., Luxemburger, C., Nosten, F., Sadoff, J. C., Singhasivanon, P., White, N. J., Webster, K. H., Wittes, J. & Wongsrichanalai, C. (1995). Field trials of an asexual blood stage malaria vaccine: studies of the synthetic peptide SPf66 in Thailand and the analytic plan for a phase IIb efficacy study. Parasitology 110, S25S36CrossRefGoogle ScholarPubMed
Basch, P. F. (1993). Antischistosomal vaccines: beyond the laboratory. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 589–92.CrossRefGoogle Scholar
Basch, P. F. (1994). Vaccines & World Health: Science, Policy & Practice. Oxford: Oxford University Press.Google Scholar
Bergquist, N. R., Hall, B. F. & James, S. (1994). Schistosomiasis vaccine development. The Immunologist 2, 131–4.Google Scholar
Bundy, D. A. P. (1988). Population ecology of intestinal helminth infections in human communities. Philosophical Transactions of the Royal Society B 321, 405–42.Google ScholarPubMed
Buxton, D. (1993). Toxoplasmosis: the first commercial vaccine. Parasitology Today 9, 335–7.CrossRefGoogle ScholarPubMed
Buxton, D. & Innes, E. A. (1995). A commercial vaccine for ovine toxoplasmosis. Parasitology (Suppl.) 110, S11S16.CrossRefGoogle ScholarPubMed
Chan, L., Bundy, D. A. P. & Kan, S. P. (1994). Genetic relatedness as a determinant of predisposition to Ascaris lumbricoides and Trichuris trichiura infection. Parasitology 108, 7780.CrossRefGoogle ScholarPubMed
Chatfield, S. N., Roberts, M., Dougan, G., Hormaeche, C. & Khan, C. M. A. (1995). The development of oral vaccines against parasitic diseases utilizing live attenuated Salmonella. Parasitology 110 (Suppl.), S17S24.CrossRefGoogle ScholarPubMed
Children's Vaccine Initiative (1993). CVI Strategic Plan. Report CVI/93.2.Google Scholar
Creese, A. L., Sriyabbaya, N., Casabal, G. & Wiseso, G. (1982). Cost-effectiveness appraisal of immunization programmes. Bulletin of the World Health Organization 60, 621–32.Google ScholarPubMed
Dunne, D. W., Butterworth, A. E., Fulford, A. J. C., Kariuki, H. C., Langley, J. G., Ouma, J. H., Capron, A., Pierce, R. J. & Sturrock, R. F. (1992). Immunity after treatment of human Schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to reinfection. European Journal of Immunology 22, 1483–94.CrossRefGoogle ScholarPubMed
Dye, C. & Targett, G. (1994). A theory of malaria vaccination. Nature 270, 95–6.CrossRefGoogle Scholar
Gupta, S., Trenholme, K., Anderson, R. M. & Day, K. (1994). Antigenic diversity and the transmission dynamics of Plasmodium falciparum. Science 263, 961–3.CrossRefGoogle ScholarPubMed
Guyatt, H. L. & Evans, D. (1995). Desirable characteristics of a Schistosomiasis vaccine: some implications of a cost-effectiveness analysis. Acta Tropica, (in press).CrossRefGoogle ScholarPubMed
Hagan, P., Blumenthal, U. J., Dunn, D., Simpson, A. J. G. & Wilkins, H. A. (1991). Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 349, 243–5.CrossRefGoogle ScholarPubMed
Hall, A., Anwar, K. S. & Tomkins, A. M. (1992). Intensity of reinfection with Ascaris lumbricoides and its implications for parasite control. The Lancet 339, 1253–7.CrossRefGoogle ScholarPubMed
Hall, A. J., Robertson, R. L., Crivelli, P. E., Lowe, Y., Inskip, H., Snow, S. K. & Whittle, H. (1993). Cost-effectiveness of hepatitis B vaccine in The Gambia. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 333–6.CrossRefGoogle ScholarPubMed
Halloran, M. E., Bundy, D. A. P. & Politt, E. (1989). Infectious disease and the UNESCO Basic Education Initiative. Parasitology Today 5, 359–61.CrossRefGoogle ScholarPubMed
Hartvelt, F. (1993). The Children's Vaccine Initiative. World Health 46th Yr No. 2, 0304 1993, 46.Google Scholar
Keymer, A. & Pagel, M. (1989). Predisposition to helminth infection. In Hookworm Infection: Current Status and New Directions (ed. Schad, G. A. & Warren, K. S.), pp. 177209. London: Taylor & Francis.Google Scholar
Lieu, T. A., Cochi, S. L., Black, S. B., Halloran, M. E., Shinefield, H. R., Holmes, S. J., Wharton, M. & Washington, A. E. (1994). Cost-effectiveness of a routine varicella vaccination program for US children. Journal of the American Medical Association 271, 375–81.CrossRefGoogle ScholarPubMed
Maizels, R. M., Bundy, D. A. P., Selkirk, M. E., Smith, D. F. & Anderson, R. M. (1993). Immunological modulation and evasion by helminth parasites in human populations. Nature 265, 797805.CrossRefGoogle Scholar
Molineaux, L. & Gramiccia, G. (1980). The Gorki Project. Geneva: World Health Organization.Google Scholar
Needham, C. S. & Lillvwhite, J. E. (1994). Immunoepidemiology of intestinal helminthic infections. 2. Immunological correlates with patterns of Trichuris infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 262–4.CrossRefGoogle ScholarPubMed
Pastoret, P.-P., Boulanger, D. & Brochier, B. (1995). Field trials of a recombinant rabies vaccine. Parasitology 110 (Suppl.), S37S42.CrossRefGoogle ScholarPubMed
Warren, K. S., Bundy, D. A. P., Anderson, R. M., Davis, A. R., Henderson, D. A., Jamison, D. T., Prescott, N. & Senft, A. (1993). Helminth infections. In Disease Control Priorities in Developing Countries (ed. Jamison, D. T., Mosley, W. H., Measham, A. R. & Bobadilla, J. L.), pp. 131–60. Oxford: Oxford University Press.Google Scholar
Who (1994). Expanded Programme on Immunization: Programme Report for 1993. WHO/EPI/GEN/94.1.Google Scholar