Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T13:08:27.071Z Has data issue: false hasContentIssue false

A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys

Published online by Cambridge University Press:  06 April 2009

R. G. Ridley
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Switzerland
B. Takacs
Affiliation:
Central Research Units, F Hoffman-La Roche Limited, CH-4002 Basel, Switzerland
H. Etlinger
Affiliation:
Central Research Units, F Hoffman-La Roche Limited, CH-4002 Basel, Switzerland
J. G. Scaife
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Switzerland

Extract

A non-polymorphic antigen associated with the rhoptry organelles of Plasmodium falciparum has been purified by immuno-affinity chromatography. The antigen, RAP-1 (rhoptry associated protein-1). which is defined by monoclonal antibodies which inhibit parasite growth in vitro, is a multi-component antigen consisting of four major proteins of 80, 65, 42 and 40 kDa and two minor proteins of 77 and 70 kDa. These proteins were electro-eluted from preparative sodium dodecyl sulphate polyacrylamide gels and protected Saimiri sciureus monkeys from a lethal blood-stage infection of P. falciparum malaria. Sera from the protected animals recognized only proteins of the RAP-1 antigen when used to probe a Western blot of total parasite protein extract, confirming that RAP-1 is responsible for eliciting the protective immune response.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikawa, M. (1971). Fine structure of malaria parasites. Experimental Parasitology 30, 284320.Google Scholar
Bannister, L. H., Mitchell, G. H., Butcher, G. A. & Dennis, E. D. (1986). Lamellar membranes associated with rhoptries in erythrocytic merozoites of Plasmodium knowlesi; a clue to the mechanism of invasion. Parasitology 92, 291303.CrossRefGoogle Scholar
Braun-Breton, C., Rosenberry, T. L. & Pereira Da Silva, L. (1988). Induction of proteolytic activity of a membrane protein in Plasmodium falciparum by phosphatidylinositol specific phospholipase C. Nature, London 322, 457–9.Google Scholar
Cheung, A., Leban, J., Shaw, A. R., Merkli, B., Stocker, J., Chizzolini, C., Sander, C. & Perrin, L. H. (1986). Immunization with synthetic peptides of Plasmodium falciparum surface antigen induces antimerozoite antibodies. Proceedings of the National Academy of Sciences, USA 83, 8328–32.Google Scholar
Clark, J. T., Anand, R., Akoglu, T. & Mcbride, J. S. (1987). Identification of proteins associated with the rhoptry organelles of Plasmodium falciparum merozoites. Parasitology Research 73, 425–34.Google Scholar
Collins, W. E., Anders, R. F., Pappaioanou, M., Campbell, G. H., Brown, G. V., Kemp, D. J., Coppel, R. L., Skinner, J. C., Andrysiak, P. M., Favoloro, J. M., Corcoran, L. M., Broaderson, J. R., Mitchell, G. F. & Campbell, C. C. (1986). Immunization of Aotus monkeys with recombinant proteins of an erythrocyte surface antigen of Plasmodium falciparum. Nature, London 323, 259–62.Google Scholar
Gentz, R., Certa, U., Takacs, B., Matile, H., Döbeli, H., Pink, R., Mackay, M., Bone, N. & Scaife, J. G. (1988). Major surface antigen p190 of Plasmodium falciparum: detection of common epitopes present in a variety of plasmodia isolates. EMBO Journal 7, 225–30.Google Scholar
Goman, M., Langsley, G., Hyde, J. E., Yankofsky, N. K., Zolg, J. W. & Scaife, J. G. (1982). The establishment of genomic DNA libraries for the human malaria parasite P. falciparum and identification of individual clones by hybridisation. Molecular and Biochemical Parasitology 5, 391400.CrossRefGoogle Scholar
Hall, R., Hyde, J. E., Goman, M., Simmons, D. L., Hope, I. A., Mackay, M., Scaife, J., Merkli, B., Richle, R. & Stocker, J. (1984). Major surface antigen of a human malaria parasite cloned and expressed in bacteria. Nature, London 311, 379–82.CrossRefGoogle ScholarPubMed
Hall, R., Mcbride, J., Morgan, G., Tait, A., Zolg, J. W., Walliker, D. & Scaife, J. G. (1983) Antigens of the erythrocytic stages of Plasmodium falciparum detected by monoclonal antibodies. Molecular and Biochemical Parasitology 7, 247–65.Google Scholar
Holder, A. A. & Freeman, R. R. (1981). Immunization against a blood-stage rodent malaria using purified parasite antigens. Nature, London 294, 361–4.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.Google Scholar
Mitchell, G., Richards, W. H. G., Butcher, G. A. & Cohen, S. (1977). Merozoite vaccination of douroucouli monkeys against falciparum malaria. Lancet 1, 1335–8.Google Scholar
Pattaroyo, M. E., Romero, P., Torres, M. L., Clavijo, P., Moreno, A., Martinez, A., Rodriguez, R., Guzman, F. & Cabbezzas, E. (1987). Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature, London 328, 629–32.Google Scholar
Pattaroyo, M. E., Amador, R., Clavijo, P., Moreno, A., Guzman, F., Romero, P., Tascon, R., Franco, A., Murillo, L. A., Ponton, G. & Trujillo, G. (1988). A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature, London 332, 158–61.CrossRefGoogle Scholar
Perrin, L. H., Merkli, B., Loche, M., Chizzolini, C., Smart, J. & Richle, R. (1985 a). Antimalaria immunity in Saimiri monkeys: immunization with surface components of asexual blood stages. Journal of Experimental Medicine 160, 441–51.CrossRefGoogle Scholar
Perrin, L. H., Merkli, B., Gabra, M. S., Stocker, J. W., Chizzolini, C. & Richle, R. (1985 b). Immunisation with a Plasmodium falciparum merozoite surface antigen induces a partial immunity in monkeys. Journal of Clinical Investigation 75, 1718–21.CrossRefGoogle ScholarPubMed
Ridley, R. G., Takacs, B., Lahm, H.-W, Delves, C. J., Goman, M., Certa, U., Matile, H., Woollett, G. R. & Scaife, J. G. (1990). Characterisation and sequence of a protective rhoptry antigen from Plasmodium falciparum. Molecular and Biochemical Parasitology 41, 125–34.Google Scholar
Siddiqui, W. A. (1977). An effective immunization of experimental monkeys against a human malaria parasite, Plasmodium falciparum. Science 197, 388–9.CrossRefGoogle ScholarPubMed
Siddiqui, W. A., Tam, L. Q., Kramer, K. J., Hui, G. S. N., Case, S. E., Yamage, K. M., Chang, S. P., Chan, E. B. T. & Kan, S.-c. (1987). Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proceedings of the National Academy of Sciences, USA 84, 3014–18.CrossRefGoogle ScholarPubMed
Takacs, B. & Staehli, C. (1987). Activated macrophages and antibodies against the plant lectin, GF1–B4, recognise the same tumour-associated structures (TAS). Journal of Immunology 138, 19992007.CrossRefGoogle ScholarPubMed
Thaithong, S. & Beale, G. (1981). Resistance of ten Thai isolates of Plasmodium falciparum to chloroquine and pyrimethamine by in vitro tests. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 271–3.CrossRefGoogle ScholarPubMed
Trager, W. & Jensen, B. (1976). Human malaria parasites in continuous culture. Science 217, 254–7.Google Scholar
Zolg, J. W., Mcleod, A. J., Dickson, L. H. & Scaife, J. G. (1982). Plasmodium falciparum: modification of the in vitro culture conditions improving parasite yields. Journal of Parasitology 68, 1072–80.CrossRefGoogle ScholarPubMed