Skip to main content Accessibility help
×
×
Home

Assessment of molecular genetic diversity and population structure of sesame (Sesamum indicum L.) core collection accessions using simple sequence repeat markers

  • Jong-Hyun Park (a1), Sundan Suresh (a1), Gyu-Taek Cho (a1), Nag-Gor Choi (a2), Hyung-Jin Baek (a1), Chul-Won Lee (a3) and Jong-Wook Chung (a1)...
Abstract

Sesame (Sesamum indicum L.) is one of the oldest oil crops and is widely cultivated in Asia and Africa. The aim of this study was to assess the genetic diversity, phylogenetic relationships and population structure of 277 sesame core collection accessions collected from 15 countries in four different continents. A total of 158 alleles were detected among the sesame accessions, with the number varying from 3 to 25 alleles per locus and an average of 11.3. Polymorphism information content values ranged from 0.34 to 0.84, with an average of 0.568. These values indicated a high genetic diversity at 14 loci both among and within the populations. Of these, 44 genotype-specific alleles were identified in 12 of the 14 polymorphic simple sequence repeat markers. The core collection preserved a much higher level of genetic variation. Therefore, 10.1% was selected as the best sampling percentage from the whole collection when constructing the core collection. The 277 core collection accessions formed four robust clusters in the unweighted pair group method and the arithmetic averages (UPGMA) dendrogram, although the clustering did not indicate any clear division among the sesame accessions based on their geographical locations. Similar patterns were obtained using model-based structure analysis and country-based dendrograms, as some accessions situated geographically far apart were grouped together in the same cluster. The results of these analyses will increase our understanding of the genotype-specific alleles, genetic diversity and population structure of core collections, and the information can be used for the development of a future breeding strategy to improve sesame yield.

Copyright
Corresponding author
*Corresponding author. E-mail: jwchung73@korea.kr
References
Hide All
Aranzana, MJ, Carbo, J and Arus, S (2003) Using amplified fragment-length polymorphisms (AFLPs) to identify peach cultivars. Journal of the American Society for Horticultural Science 128: 672677.
Ashri, A (1998) Sesame breeding. In: Janick, J (ed.) Plant Breeding Reviews. New York: John Wiley & Sons Inc.
Bhat, KV, Babrekar, PP and Lakhanpaul, S (1999) Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 110: 2133.
Bhattacharjee, R, Khairwal, IS, Bramel, PJ and Reddy, KN (2007) Establishment of a pearl millet [Pennisetum glaucum (L.) Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155: 3545.
Cho, YG, Mccouch, SR, Kuiper, M, Kang, MR, Pot, J, Groenen, JTM and Eun, MY (1998) Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theoretical and Applied Genetics 97: 370380.
Cho, YL, Park, JH, Lee, CW, Ra, WH, Chung, JW, Lee, JR, Ma, KH, Lee, SJ, Lee, KS, Lee, MC and Park, YJ (2011) Evaluation of the genetic diversity and population structure of sesame (Sesamum indicum L.) using microsatellite markers. Genes and Genomics 33: 187195.
Dangi, RS, Lagu, MD, Choudhary, LB, Ranjekar, PK and Gupta, VS (2004) Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biology 4: 13.
Day, SJ (2000) Development and maturation of sesame seeds and capsules. Field Crops Research 67: 19.
Dellaporta, S, Wood, J and Hicks, JB (1983) A plant DNA minipreparation: version II. Plant Molecular Biology Reporter 1: 1921.
Dixit, A, Jin, MH, Chung, JW, Yu, JW, Chung, HK, Ma, KH, Park, YJ and Cho, EG (2005) Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Molecular Ecology Notes 5: 736738.
Donini, P, Stephenson, P, Bryan, GJ and Koebner, RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genetic Resources and Crop Evolution 45: 415421.
Ercan, AG, Taskin, M and Turgut, K (2004) Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genetic Resources and Crop Evolution 51: 599607.
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 26112620.
Falush, D, Stephens, M and Pritchard, JK (2003) Inference of population structure using multilocus genotypes data: linked loci and correlated allele frequencies. Genetics 164: 15671587.
Frankel, OH (1984) Genetic perspectives of germplasm conservation. In: Arber, WK, Llimensee, K, Peacock, WJ and Starlinger, P (eds) Genetic Manipulation: Impact on Man and Society. Cambridge: Cambridge University Press, pp. 161170.
Fukuda, Y, Nagata, M, Osawa, T and Namiki, M (2007) Contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. Journal of the American Oil Chemists' Society 63: 10271031.
Gao, LZ, Zhang, CH, Chang, LP, Jia, JZ, Qiu, ZE and Dong, YS (2005) Microsatellite diversity within Oryza sativa with emphasis on indicajaponica divergence. Genetics Research 85: 114.
Gwag, JG, Dixit, A, Park, YJ, Ma, KH, Kwon, SJ, Cho, GT, Lee, GA, Lee, SY, Kang, HK and Lee, SH (2010) Assessment of genetic diversity and population structure in mungbean. Genes and Genomics 32: 299308.
Hamrick, JL and Godt, MJW (1989) Allozyme diversity in plants. In: Brown, AHD, Clegg, MT, Kahler, AL and Weir, BS (eds) Plant Population Genetics, Breeding and Germplasm Resources. Sunderland, MA: Sinauer, pp. 4363.
Hansen, LB, Siegismund, HR and Jorgensen, RB (2003) Progressive introgression between Brassica napus (oilseed rape) and Brassica rapa . Heredity 91: 276283.
Hodgkin, T, Brown, AHD, Hintum, TJLV and Morales, EAV (1995) Core Collections of Plant Genetic Resources. A Co-publication with the International Plant Genetic Resources Institute (IPGRI). Chichester: A Wily Sayce Publication, pp. 213228.
Huang, XQ, Borner, A, Roder, MS and Ganal, MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theoretical and Applied Genetics 105: 699707.
Jarvis, DI and Hodgkin, T (1998) Wild relatives and crop cultivars: conserving the connection. In: Zencirci, N, Kaya, Z, Anikster, Y and Adams, WT (eds) The Proceedings of an International Symposium on in situ Conservation of Plant Genetic Diversity. London: George Allen & Unwin, pp. 163179.
Jarvis, DI and Hodgkin, T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Molecular Ecology 8: S159S173.
Jin, MH, Lee, JR, Yu, JW, Chung, JW, Ma, KH, Dixit, A, Kim, DH, Paek, NC, Cho, EG and Park, YJ (2009) Development and characterization of microsatellite markers for utilization in diversity analysis of sesame (Sesamum indicum L.) germplasm collection. Konkuk Journal of Life Science and Environment 31: 110.
Khlestkina, EK, Huang, XQ, Quenum, FJB, Chebotar, S, Roder, MS and Borner, A (2004) Genetic diversity in cultivated plants-loss or stability? Theoretical and Applied Genetics 108: 14661472.
Kim, KW, Chung, HK, Cho, GT, Ma, KH, Chandrabalan, D, Gwag, JG, Kim, TS, Cho, EG and Park, YJ (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23: 21552162.
Li, Z, Zhang, H, Zeng, Y, Yang, Z, Shen, S, Sun, C and Wang, X (2002) Studies on sampling schemes for the establishment of core collection of rice landraces in Yunnan China. Genetic Resources and Crop Evolution 49: 6774.
Liu, KJ and Muse, SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 21282129.
Nyongesa, BO, Were, BA, Gudu, S, Dangasuk, OG and Onkware, AO (2013) Genetic diversity in cultivated sesame (Sesamum indicum L.) and related wild species in East Africa. Journal of Crop Science and Biotechnology 16: 915.
Pathirana, R (1994) Natural cross-pollination in sesame (Sesamum indicum L.). Plant Breeding 112: 167170.
Peakall, R and Smouse, PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 25372539.
Powell, W, Machray, GC and Provan, J (1996) Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1: 215222.
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population genetic structure using multilocus genotype data. Genetics 155: 945959.
Roussel, V, Koenig, J, Beckert, M and Balfourier, F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programs. Theoretical and Applied Genetics 108: 920930.
Salazar, B, Laurentin, H, Davila, M and Castillo, MA (2006) Reliability of the RAPD technique for germplasm analysis of sesame (Sesamum indicum L.) from Venezuela. Interciencia 31: 456460.
Schuelke, M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233234.
Tamura, K, Dudley, J, Nei, M and Kumar, S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 15961599.
Vinod, K and Sharma, SN (2011) Comparative potential of phenotypic, ISSR and SSR markers for characterization of sesame (Sesamum indicum L.) varieties from India. Journal of Crop Science and Biotechnology 14: 163171.
Wang, Linhai, Zhang, Yanxin, Qi, Xiaoqiong, Gao, Yuan and Zhang, Xiurong (2012) Development and characterization of 59 polymorphic cDNA-SSR markers for the edible oil crop Sesamum indicum (Pedaliaceae). American Journal of Botany 99: e394e398.
Yermanos, DM (1980) Sesame. In: Fehr, WR and Hadley, HH (eds) Hybridization of Crop Plants. Madison, WI: American Society of Agronomy and Crop Science Society of America, pp. 549563.
Yifru, T, Hammer, K, Huang, XQ and Roder, MS (2006) Regional patterns of microsatellite diversity in Ethiopian tetraploid wheat accessions. Plant Breeding 125: 125130.
Zhang, H, Wei, L, Miao, H, Zhang, T and Wang, C (2012a) Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics 13: 316.
Zhang, Y, Zhang, X, Che, Z, Wang, L, Wei, W and Li, D (2012b) Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection. BMC Genetics 13: 102126.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Plant Genetic Resources
  • ISSN: 1479-2621
  • EISSN: 1479-263X
  • URL: /core/journals/plant-genetic-resources
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Park Supplementary Material
Table

 Word (827 KB)
827 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed