Adams, P (1986) Mineral nutrition. In: Atherton, JG and Rudich, J (eds) The Tomato Crop: A Scientific Basis for Improvement. Dordrecht: Springer Netherlands, pp. 281–334.
Adams, P (2002) Nutritional control in hydroponics. In: Savvas, D and Passam, HC (eds) Hydroponic Production of Vegetables and Ornamentals. Athens, Greece: Embryo Publications, pp. 211–261.
Akundabweni, L, Mulokozi, G and Maina, D (2010) Ionomic variation characterization in African leafy vegetables for micronutrients using XRF and HPLC. African Journal of Food, Agriculture, Nutrition and Development
10: 4320–4339.
Apse, MP and Blumwald, E (2002) Engineering salt tolerance in plants. Current Opinion in Biotechnology
13: 146–150.
Barker, AV and Ready, KM (1994) Ethylene evolution by tomatoes stressed by ammonium nutrition. Journal of the American Society for Horticultural Science
119: 706–710.
Breksa, AP, Robertson, LD, Labate, JA, King, BA and King, DE (2015) Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods. Journal of Food Composition and Analysis
42: 16–25.
Capel, C, Yuste-Lisbona, FJ, López-Casado, G, Angosto, T, Heredia, A, Cuartero, J, Fernández-Muñoz, R, Lozano, R and Capel, J (2017) QTL mapping of fruit mineral contents provides new chances for molecular breeding of tomato nutritional traits. Theoretical and Applied Genetics
130: 903–913.
Chaïb, J, Lecomte, L, Buret, M and Causse, M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theoretical and Applied Genetics
112: 934–944.
Davies, JN, Hobson, GE and McGlasson, WB (1981) The constituents of tomato fruit - the influence of environment, nutrition, and genotype. Critical Reviews in Food Science & Nutrition
15: 205–280.
Davis, DR, Epp, MD and Riordan, HD (2004) Changes in USDA food composition data for 43 garden crops, 1950 to 1999. Journal of the American College of Nutrition
23: 669–682.
Economic Research Service/USDA. (2017) Ag and Food Statistics, Charting the Essentials, 2017, Administrative Publication Number 075, pp. 28.
Fernández-Ruiz, V, Olives, AI, Cámara, M, de Cortes Sánchez-Mata, M and Torija, ME (2011) Mineral and trace elements content in 30 accessions of tomato fruits (Solanum lycopersicum L.,) and wild relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites S. Knapp & D.M. Spooner). Biological Trace Element Research
141: 329–339.
Giuffrida, F, Martorana, M and Leonardi, C (2009) How sodium chloride concentration in the nutrient solution influences the mineral composition of tomato leaves and fruits. HortScience
44: 707–711.
Hartz, TK, Johnstone, PR, Francis, DM and Miyao, EM (2005) Processing tomato yield and fruit quality improved with potassium fertigation. HortScience
40: 1862–1867.
Huang, J and Snapp, SS (2004) A bioassay investigation of calcium nutrition and tomato shoulder check cracking defect. Communications in Soil Science and Plant Analysis
35: 2771–2787.
Karppanen, H, Karppanen, P and Mervaala, E (2005) Why and how to implement sodium, potassium, calcium, and magnesium changes in food items and diets?
Journal of Human Hypertension
19: S10–S19.
Kaushik, P, Andújar, I, Vilanova, S, Plazas, M, Gramazio, P, Herraiz, FJ, Brar, NS and Prohens, J (2015) Breeding vegetables with increased content in bioactive phenolic acids. Molecules
20: 18464–18481.
Kidson, EB, Watson, J and Hodgson, L (1953) Nutrient uptake by glasshouse tomato plants. New Zealand Journal of Science and Technology Section A
35: 127–134.
Kleiber, T (2014) Changes of nutrient contents in tomato fruits under the influence of increasing intensity of manganese nutrition. Ecological Chemistry and Engineering S
21: 297–307.
Kumssa, DB, Joy, EJ, Ander, EL, Watts, MJ, Young, SD, Walker, S and Broadley, MR (2015) Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Scientific Reports
5: 10974.
Kusano, M, Baxter, I, Fukushima, A, Oikawa, A, Okazaki, Y, Nakabayashi, R, Bouvrette, DJ, Achard, F, Jakubowski, AR and Ballam, JM (2015) Assessing metabolomic and chemical diversity of a soybean lineage representing 35 years of breeding. Metabolomics
11: 261–270.
Lichter, A, Dvir, O, Fallik, E, Cohen, S, Golan, R, Shemer, Z and Sagi, M (2002) Cracking of cherry tomatoes in solution. Postharvest Biology and Technology
26: 305–312.
Mayer, A-M (1997) Historical changes in the mineral content of fruits and vegetables. British Food Journal
99: 207–211.
Mir-Marqués, A, Cervera, ML and de la Guardia, M (2016) Mineral analysis of human diets by spectrometry methods. TrAC Trends in Analytical Chemistry
82: 457–467.
Nour, V, Trandafir, I and Ionica, ME (2013) Antioxidant compounds, mineral content and antioxidant activity of several tomato cultivars grown in southwestern Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca
41: 136–142.
Ordóñe-Santos, LE, Vázque-Odériz, ML and Romer-Rodríguez, M (2011) Micronutrient contents in organic and conventional tomatoes (Solanum lycopersicum L.). International Journal of Food Science & Technology
46: 1561–1568.
Ozturkoglu-Budak, S and Aksahin, I (2016) Multivariate characterization of fresh tomatoes and tomato-based products based on mineral contents including major trace elements and heavy metals. Journal of Food & Nutrition Research
55: 214–221.
Passam, HC, Karapanos, IC, Bebeli, PJ and Savvas, D (2007) A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. The European Journal of Plant Science and Biotechnology
1: 1–21.
Pohl, HR, Wheeler, JS and Murray, HE (2013) Sodium and potassium in health and disease. Metal Ions in Life Sciences
13: 29–47.
Powles, J, Fahimi, S, Micha, R, Khatibzadeh, S, Shi, P, Ezzati, M, Engell, RE, Lim, SS, Danaei, G and Mozaffarian, D (2013) Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open
3: e003733.
Prarthana, S, Prasad, DT and Shivanna, MB (2014) Identification of RAPD markers associated with morphological, biochemical and ionomic characteristics in Indian tomato genotypes. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences
84: 55–64.
Rahim, M (2015) Role of vegetables for solving micronutrient deficiency (hidden hunger) in Bangladesh. Proceedings of the regional symposium on sustaining small-scale vegetable production and marketing systems for food and nutrition security (SEAVEG2014), 25–27 February 2014, Bangkok, Thailand, pp. 84–88.
Sager, M (2017) Main and trace element contents of tomatoes grown in Austria. Journal of Food Science and Engineering
7: 239–248.
Sands, DC, Morris, CE, Dratz, EA and Pilgeram, AL (2009) Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods. Plant Science
177: 377–389.
SAS Institute Inc. (2011) Base SAS® 9.3 Procedures Guide SAS Institute Inc. Cary, NC.
Sokal, RR and Rohlf, FJ. (1981) Biometry: The Principles and Practice of Statistics in Biological Research, 2nd edn.
New York: W.H. Freeman and Co., pp. 411–412.
Stommel, JR. (2007) Genetic enhancement of tomato fruit nutritive value. In: Razdan, MK and Matoo, AK (eds) Genetic Improvement of Solanaceous Crops. Enfield, NH: Science Publishers, pp. 193–238.
Walker, DJ, Cerdá, A and Martínez, V (2000) The effects of sodium chloride on ion transport in potassium-deficient tomato. Journal of Plant Physiology
157: 195–200.
Watanabe, T, Maejima, E, Yoshimura, T, Urayama, M, Yamauchi, A, Owadano, M, Okada, R, Osaki, M, Kanayama, Y and Shinano, T (2016) The ionomic study of vegetable crops. PLoS ONE
11: e0160273.
Weaver, CM (2013) Potassium and health. Advances in Nutrition: An International Review Journal
4: 368S–377S.
Webb, M, Fahimi, S, Singh, GM, Khatibzadeh, S, Micha, R, Powles, J and Mozaffarian, D (2017) Cost effectiveness of a government supported policy strategy to decrease sodium intake: global analysis across 183 nations. BMJ
356: i6699.
White, PJ and Broadley, MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist
182: 49–84.
Zhang, J, Zhao, J, Liang, Y and Zou, Z (2016) Genome-wide association-mapping for fruit quality traits in tomato. Euphytica
207: 439–451.
Zoran, IS, Nikolaos, K and Ljubomir, Š (2014) Tomato fruit quality from organic and conventional production. In: Pilipavicius, V (ed.) Organic Agriculture Towards Sustainability. Rijeka, Croatia: InTech. pp. 147–169. doi: 10.5772/58239.