Skip to main content
×
×
Home

Phenotypic diversity and relationships among Chilean Choclero maize (Zea mays L. mays) landraces

  • Erika Salazar (a1), José Correa (a1), María José Araya (a1), Marco A. Méndez (a2) and Basilio Carrasco (a3)...
Abstract

Choclero is a Chilean traditional floury maize, consumed as a vegetable, with large economic and cultural value due to its culinary properties that give unique characteristics to the traditional local cuisine. Market diversification demands new materials with different ear and kernel characteristics, which are at present not fulfilled by breeders due to lack of genetic diversity. At present, the Instituto de Investigaciones Agropecuarias has a Choclero germplasm collection composed of 96 accessions, which can supply this lack of diversity, or increase the gene pool. In the present study, 34 selected Chilean Choclero landraces were characterized for 41 agromorphological traits. Phenotypic evaluation in three environments representative of the core production area revealed significant genetic variability for most of the evaluated traits, leading to the identification of several promising accessions. The greater contribution of genotype in most phenological plant, ear and kernel traits suggest their potential usefulness for breeding purposes. Principal component analysis explained over 75% of the total variation for 29 quantitative agromorphological traits. Cluster analysis separated accessions into four major groups, differentiated mainly by plant phenology and ear trait. These findings indicate a number of useful traits at an intra-racial level and a wide range of phenotypic variation that provides a good source of diversity for use in the development of new Choclero varieties.

Copyright
Corresponding author
*Corresponding author. E-mail: esalazar@inia.cl
References
Hide All
Acharjee, A, Kloosterman, B, de Vos, RC, Werij, JS, Bachem, CW, Visser, RG and Maliepaard, C (2011) Data integration and network reconstruction with ~omics data using Random Forest regression in potato. Analytica Chimica Acta 705: 5663.
Aljaro, A (1972) Efecto de un programa de selección recurrente y masal en una población de maíz Choclero (Zea mays L.). Thesis, Universidad Católica de Chile.
Badstue, LB, Bellon, M, Berthaud, J, Ramírez, A, Flores, D and Juárez, X (2007) The dynamics of farmer's maize seed supply practices in the Central Valleys of Oaxaca, Mexico. World Development 35: 15791593.
Bates, D and Maechler, M (2009) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-32. Available at http://CRAN.R-project.org. Accessed March, 2012.
Beyene, Y, Bottha, AM and Myburg, AA (2005) A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. African Journal of Biotechnology 4: 586595.
Breiman, L and Cutler, A (2004) Random forests. Berkeley. Available at http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm. Accessed June 2014.
Campbell, MR, Anih, E, Conatser, C, Grau-Saavedra, B and Pollak, LM (2006) Development of a core subset of Chilean lowland subtropical and temperate maize (Zea mays L.) populations using near infrared transmittance spectroscopy. Plant Genetic Resources Newsletter 148: 19.
Camus-Kulandaivelu, L,Veyrieras, JB, Madur, D, Combes, V, Fourmann, M, Barraud, S, Dubreuil, P, Gouesnard, B, Manicacci, D and Charcosset, A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the dwarf 8 gene. Genetics 172: 24492463.
Castro, V (2000) Evaluación del comportamiento de cinco cultivares de maíz Choclero en una microcuenca de riego del secano de la VI región. Agroclima Hidango. Thesis, Universidad Santo Tomás.
Cox, J (1989) Choclero híbrido: avances en la investigación nacional. Chile Agrícola 14: 440441.
Dieters, MJ, White, TL, Littell, RC and Hedge, GR (1995) Application of approximate variances of variance-components and their ratios in genetic tests. Theoretical and Applied Genetics 91: 1524.
Dray, S and Dufour, AB (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 120.
Everitt, B and Hothorn, T (2011) An Introduction to Applied Multivariate Analysis with R. Heidelberg: Springer. 273 pages. ISBN: 978-1-441-99649-7.
Faiguenbaum, H (2004) Cultivo del Choclo. El Campesino 135: 1621.
Fuentes, ZJ and Ciudad, BC (1974) Contenido de proteína y lisina de algunos maíces Chocleros Chilenos (Zea mays). Agricultura Técnica 34: 3638.
Galinat, WC (1996) Bl (Broadleaf), a genetic trait that may enhance yields by contributing to the canopy. MNL 70: 68.
Gouesnard, B, Dallard, J, Panouille, A and Boyat, A (1997) Classification of French maize populations based on morphological traits. Agronomie 17: 491498.
Gutierrez, L, Franco, J, Crossa, J and Abadie, T (2003) Comparing a preliminary racial classification with a numerical classification of the maize landraces of Uruguay. Crop Science 43: 718727.
Hartings, H, Berardo, N, Mazzinelli, GF, Valoti, P, Verderio, A and Motto, M (2008) Assessment of genetic diversity and relationships among maize (Zea mays L.) Italian landraces by morphological traits and AFLP profiling. Theoretical and Applied Genetics 117: 831–84.
Hefner, JT, Spradley, MK and Anderson, B (2014) Ancestry assessment using random forest modeling. Journal of Forensic Science 59(3): 583589.
Huang, H, Liu, Y and Marron, JS (2010) sigclust: Statistical Significance of Clustering. R package version: 1.0.0. Available at http://www.R-project.org. Accessed April 2014.
IBPGR (1991) Descriptors for Maize. Rome: International Maize and Wheat Improvement Center, Mexico City/International Board for Plant Genetic Resources, 88 p.
Jara, C (2005) Resultado parcial de un programa de mejoramiento genético en maíz Choclero (Zea mays L.). Thesis, Universidad Católica de Chile.
Jugenheimer, R (1959) Obtención de maíz híbrido y producción de semilla. Roma, Italia: FAO, 395 p.
Knežecić, J, Prodanović, S, Iwarsson, M and Minina, A (2010) Diversity of maize (Zea mays L.) landraces in Eastern Serbia: morphological and storage protein characterization. Maydica 55: 231238.
Kuznetsova, A, Brockhoff, PB and Christensen, RHB (2013) lmer Test: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 1.1-0. Available at http://CRAN.R-project.org/package=lmerTest. Accessed February, 2013.
López, G, Santacruz, A, Muñoz, A, Castillo, F, Córdova, L and Vaquera, H (2005) Caracterización morfológica de poblaciones nativas de maíz del Istmo de Tehuantepec, México. Interciencia 30: 284290.
Louette, D (1999). Traditional management of seed and genetic diversity: What is a landrace? Genes in the field: on farm conservation of crop diversity. S-B. Brush, IPGRI, IDRC, Lewis.
Luchsinger, A and Camilo, F (2008) Sweet corn cultivars and their behavior with different sowing dates in the 6th region of Chile. IDESIA (Chile) 26: 4552.
Magari, R and Kang, MS (1993) Genotype selection via a new yield-stability statistic in maize yield trials. Euphytica 70: 105111.
Mohammadi, SA and Prasanna, BM (2003) Analysis of genetic diversity in crop plants – salient statistical tools and considerations. Crop Science 43: 12351248.
Montecino, S (2004) Cocinas Mestizas de Chile. La Olla Deleitosa, Museo Chileno de Arte Precolombino. 132 p.
ODEPA (2013) Estadísticas Agrícolas. Available at http://www.odepa.cl/ Accessed December, 2013.
Paratori, O (1983) Recolección, clasificación y estudio de germoplasma chileno de maíz. Simiente 53: 3338.
Paratori, O (1995a). Adaptación, clasificación y producción de semilla. In: Paratori, O and Altamirano, y.S. (eds) El cultivo del Maíz. Santiago: Instituto de Investigaciones Agropecuarias, pp. 1319.
Paratori, O (1995b) Maíz para consumo tierno. In: Paratori, O and Altamirano, y.S. (eds). El cultivo del Maíz. Santiago: Instituto de Investigaciones Agropecuarias, pp. 1319.
Paratori, O and Silva, F (1987) Evaluación y regeneración de germoplasma nativo de maíz. Informe Anual Etapa 1. Latin American Maize Project. Santiago. 79 p.
Paratori, O, Sbárbaro, R and Villegas, C (1990) Catálogo de recursos genéticos de maíz. Boletín Técnico N°165, Santiago, Chile: Instituto de Investigaciones Agropecuarias, 210 p.
Parker, I and Paratori, O (1965) Distribución geográfica, clasificación y estudio del maíz (Zea mays) en Chile. Agricultura técnica 25: 7086.
Pollak, LM (2002) The history and success of the public-private project on germplasm enhancement of maize (GEM). Advances in Agronomy 78: 4587.
Prasanna, BM and Sharma, L (2005) The landraces of maize (Zea mays L.): diversity and utility. Indian Journal of Plant Genetic Resources 18: 155168.
R Development Core Team (2011) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, ISBN 3-900051-07-0. http://www.R-project.org/. Accessed December, 2014.
Rincon, F, Johnson, B, Crossa, J and Taba, S (1997) Identifying sunsets of maize accessions by three-mode principal components analysis. Crop Science 37: 19361943.
Ruiz de Galarreta, JI and Alvarez, A (2001) Morphological classification of maize landraces from northern Spain. Genetic Resources and Crop Evolution 48: 391400.
Salhuana, W and Pollak, LM (2006) Latin American Maize Project (LAMP) and Germplasm Enhancement of Maize (GEM) Project: generating useful breeding germplasm. Maydica 51: 339355.
Salhuana, W, Pollak, LM, Ferrer, M, Paratori, O and Vivo, G (1998) Breeding potential of maize accessions from Argentina, Chile, USA, and Uruguay. Crop Science 38: 866872.
Santacruz-Varela, A, Widrlechner, MP, Ziegler, KE, Salvador, RJ, Millard, MJ and Bretting, PK (2004) Phylogenetic relationships among North American popcorns and their evolutionary links to Mexican and South American popcorns. Crop Science 44: 14561467.
Sepúlveda, R (2000) Evaluación de seis variedades de maíz Choclero para consumo fresco. Thesis. Pontificia Universidad Católica de Chile.
Sillampää, M and Corander, J (2002) Model choice in gene mapping: what and why. Trends in Genetics 18: 301:307.
Timothy, D, Peña, B and Ramírez, R (1961) Races of maize in Chile. Washington, D.C., USA: National Academy of Sciences-National Research Council, Publication no. 847.
Uribe, JM, Cabrera, R, De la Fuente, A and Paneque, M (2012) Atlas bioclimático de Chile. Santiago: Universidad de Chile – CORFO – Ministerio de Bienes Nacionales.
Wehrens, R (2011) Chemometrics with R: Multivariate Data Analysis in the Natural Sciences and Life Sciences. Series: Use R!. Berlin Heidelberg: Springer-Verlag, 285p.
Wei, T (2013) corrplot: Visualization of a correlation matrix. R package version 0.72. Available at http://CRAN.R-project.org/package=corrplot
Wickham, H (2009) ggplot2: Elegant Graphics for Data Analysis. New York: Springer, 212 p.
Williams, MM (2014) Few crop traits accurately predict variables important to productivity of processing sweet corn. Field Crops Research 157: 2026.
Yang, RC and Baker, RJ (1991) Genotype-environment interactions in two wheat crosses. Crop Science 31: 8387.
Zerene, I (1985) Grado de asociación entre los caracteres de la panoja y el rendimiento del grano de maíz: (Zea mays L). Thesis. Universidad Austral de Chile.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Plant Genetic Resources
  • ISSN: 1479-2621
  • EISSN: 1479-263X
  • URL: /core/journals/plant-genetic-resources
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Salazar supplementary material
Salazar supplementary material

 Word (209 KB)
209 KB

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 46 *
Loading metrics...

Abstract views

Total abstract views: 514 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd August 2018. This data will be updated every 24 hours.