Skip to main content

Compound Poisson—Gamma Regression Models for Dollar Outcomes That Are Sometimes Zero

  • Benjamin E. Lauderdale (a1)

Political scientists often study dollar-denominated outcomes that are zero for some observations. These zeros can arise because the data-generating process is granular: The observed outcome results from aggregation of a small number of discrete projects or grants, each of varying dollar size. This article describes the use of a compound distribution in which each observed outcome is the sum of a Poisson—distributed number of gamma distributed quantities, a special case of the Tweedie distribution. Regression models based on this distribution estimate loglinear marginal effects without either the ad hoc treatment of zeros necessary to use a log-dependent variable regression or the change in quantity of interest necessary to use a tobit or selection model. The compound Poisson—gamma regression is compared with commonly applied approaches in an application to data on high-speed rail grants from the United States federal government to the states, and against simulated data from several data-generating processes.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Political Analysis
  • ISSN: 1047-1987
  • EISSN: 1476-4989
  • URL: /core/journals/political-analysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 145 *
Loading metrics...

* Views captured on Cambridge Core between 4th January 2017 - 23rd July 2018. This data will be updated every 24 hours.