Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-65n5b Total loading time: 0.209 Render date: 2021-06-14T00:49:28.304Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Nonlinear Modelling for Predicting Patient Presentation Rates for Mass Gatherings

Published online by Cambridge University Press:  02 July 2018

Paul Arbon
Affiliation:
Torrens Resilience Institute, Flinders University, Adelaide, Australia
Murk Bottema
Affiliation:
Torrens Resilience Institute, Flinders University, Adelaide, Australia
Kathryn Zeitz
Affiliation:
Torrens Resilience Institute, Flinders University, Adelaide, Australia
Adam Lund
Affiliation:
Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
Sheila Turris
Affiliation:
Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
Olga Anikeeva
Affiliation:
Torrens Resilience Institute, Flinders University, Adelaide, Australia
Malinda Steenkamp
Affiliation:
Torrens Resilience Institute, Flinders University, Adelaide, Australia
Corresponding

Abstract

Introduction

Mass gatherings are common in Australia. The interplay of variables, including crowd density and behavior, weather, and the consumption of alcohol and other drugs, can pose a unique set of challenges to attendees’ well-being. On-site health services are available at most mass gatherings and reduce the strain on community health facilities. In order to efficiently plan and manage these services, it is important to be able to predict the number and type of presenting problems at mass gatherings.

Problem

There is a lack of reliable tools to predict patient presentations at mass gatherings. While a number of factors have been identified as having an influence on attendees’ health, the exact contribution of these variables to patient load is poorly understood. Furthermore, predicting patient load at mass gatherings is an inherently nonlinear problem, due to the nonlinear relationships previously observed between patient presentations and many event characteristics.

Methods

Data were collected at 216 Australian mass gatherings and included event type, crowd demographics, and weather. Nonlinear models were constructed using regression trees. The full data set was used to construct each model and the model was then used to predict the response variable for each event. Nine-fold cross validation was used to estimate the error that may be expected when applying the model in practice.

Results

The mean training errors for total patient presentations were very high; however, the distribution of errors per event was highly skewed, with small errors for the majority of events and a few large errors for a small number of events with a high number of presentations. The error was five or less for 40% of events and 15 or less for 85% of events. The median error was 6.9 presentations per event.

Conclusion:

This study built on previous research by undertaking nonlinear modeling, which provides a more realistic representation of the interactions between event variables. The developed models were less useful for predicting patient presentation numbers for very large events; however, they were generally useful for more typical, smaller scale community events. Further research is required to confirm this conclusion and develop models suitable for very large international events.

Arbon P, Bottema M, Zeitz K, Lund A, Turris S, Anikeeva O, Steenkamp M. Nonlinear modelling for predicting patient presentation rates for mass gatherings. Prehosp Disaster Med. 2018;33(4):362–367

Type
Original Research
Copyright
© World Association for Disaster and Emergency Medicine 2018 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Conflicts of interest/funding: This study was funded by the Australian Research Council (ARC; Canberra, Australia) Discovery Projects scheme (project number: DP140101448). The authors have no conflicts of interest to declare.

References

1. Arbon, PA. The development of conceptual models for mass-gathering health. Prehosp Disaster Med. 2004;19(3):208-212.CrossRefGoogle ScholarPubMed
2. Arbon, PA, Cusack, L, Verdonk, NR. Mass gathering public health and emergency medicine literature review: levels of evidence. Australasian Journal of Paramedicine. 2013;10(1):5.Google Scholar
3. Zeitz, K, Zeitz, C, Arbon, PA. Forecasting medical work at mass-gathering events: predictive model versus retrospective review. Prehosp Disaster Med. 2005;20(3):164-168.CrossRefGoogle ScholarPubMed
4. Hnatow, DA, Gordon, DJ. Medical planning for mass gatherings: a retrospective review of the San Antonio Papal Mass. Prehosp Disaster Med. 1991;6(4):443-450.CrossRefGoogle Scholar
5. De Lorenzo, RA. Mass-gathering medicine: a review. Prehosp Disaster Med. 1997;12(1):68-72.CrossRefGoogle ScholarPubMed
6. Michael, JA, Barbera, JA. Mass-gathering medical care: a twenty-five-year review. Prehosp Disaster Med. 1997;12(4):305-312.CrossRefGoogle ScholarPubMed
7. Milsten, AM, Maguire, BJ, Bissell, RA, Seaman, KG. Mass-gathering medical care: a review of the literature. Prehosp Disaster Med. 2002;17(3):151-162.CrossRefGoogle ScholarPubMed
8. Arbon, PA, Bridgewater, FH, Smith, C. Mass-gathering medicine: a predictive model for patient presentations and transport rates. Prehosp Disaster Med. 2001;16(3):150-158.CrossRefGoogle ScholarPubMed
9. Hartman, N, Williamson, A, Sojka, B, et al. Predicting resource use at mass gatherings using a simplified stratification scoring model. Am J Emerg Med. 2009;27(3):337-343.CrossRefGoogle ScholarPubMed
10. Baird, MB, O’Connor, RE, Williamson, AL, Sojka, B, Alibertis, K, Brady, WJ. The impact of warm weather on mass event medical need: a review of literature. Am J Emerg Med. 2010;28(2):224-229.CrossRefGoogle Scholar
11. Breiman, L, Friedman, J, Olshen, R, Stone, C. Classification and Regression Trees. Boca Raton, Florida USA: CRC Press; 1984.Google Scholar
12. Hastie, Tibshirani, Friedman, J. The Elements of Statistical Learning. New York USA: Springer; 2009.CrossRefGoogle Scholar
Supplementary material: File

Arbon et al. supplementary material

Appendices A-G

Download Arbon et al. supplementary material(File)
File 19 KB
7
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nonlinear Modelling for Predicting Patient Presentation Rates for Mass Gatherings
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nonlinear Modelling for Predicting Patient Presentation Rates for Mass Gatherings
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nonlinear Modelling for Predicting Patient Presentation Rates for Mass Gatherings
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *