Skip to main content Accessibility help
×
×
Home

Amount of Usage and Involvement in Explosions Not Associated with Increased Contamination of Prehospital Vehicles with Multi-drug-resistant Organisms

  • Emil Lesho (a1), Julie Ake (a2), Xiao-Zhe Huang (a2), Dana M. Cash (a2), Mikeljon Nikolich (a2), Melissa Barber (a3), Kathleen Robens (a4), Eric Garnett (a5), Luther Lindler (a6) and Paul Scott (a1)...
Abstract
Introduction

The role of explosions and patient transport vehicles as sources and vectors of Gram-negative, multidrug-resistant organisms (MDROs) that predominate infections following lengthy evacuations after disasters due to natural hazards and in current war-trauma patients is unknown.

Hypothesis/Problem

Damaged or heavily-used vehicles could be sources of the MDROs subsequently linked to nosocomial infections.

Methods

From January through May 2008 in Iraq, inside surfaces of heavily-used, tactical vehicles (Experimental Group) were sampled with sterile, pre-moistened swabs. Swabs, along with positive and negative controls, were shipped to the reference laboratory in Washington, DC, where they underwent culture, identification and susceptibility testing, and pulsed-field gel electrophoresis. Multidrug-resistant organisms were defined according to the standard Centers for Disease Control and Prevention definitions. High risk organisms (HROs) were defined as susceptible E. coli, A. baumannii, P. aeruginosa, Enterobacter spp, or Klebsiella spp. Concurrently, new counterparts (Control Group) were similarly surveyed in a storage lot in Georgia, USA. Groups were compared using the Chi-squared test.

Results

One hundred thirty-nine consecutive vehicles including all available ambulances were sampled, yielding 153 swabs. Nineteen were lost or damaged during shipping. Seventy-nine swabs yielded growth of one or more Gram-negative bacteria. The amount and genotype of MDROs in heavily-used vehicles, including those involved in roadside bombings, were compared to control vehicles and to strains isolated from wounds and environmental surfaces at the base hospital. Predominant organisms included P. agglomerans (34%), S. flexneri (8%), E. vulneris (6%), Pseudomonas sp. (6%), and K. pneumonia (6%). No MDROs were isolated. Thirteen vehicles (eight of 94 experimental and five of 45 control) yielded HRO. There was no difference in contamination rates (P = .63). No HROs were isolated from ambulances. No clonal association existed between vehicle and hospital strains.

Conclusion

Given the implications that this knowledge gap has on military and civilian prehospital reservoirs of infection, further study is warranted to confirm these findings and identify targets for preventive intervention throughout civilian disaster and military casualty evacuation chains.

LeshoE, AkeJ, HuangX, CashDM, NikolichM, BarberM, RobensK, GarnettE, LindlerL, ScottP. Amount of Usage and Involvement in Explosions Not Associated with Increased Contamination of Prehospital Vehicles with Multi-drug-resistant Organisms. Prehosp Disaster Med. 2013;28(2):1-3..

Copyright
Corresponding author
Correspondence: Emil Lesho, DO 2209 Parker Avenue Silver Spring, MD 20902 USA E-mail carolinelesho@yahoo.com
References
Hide All
1.Miskin, IN, Nir-Paz, R, Merin, O, Burshtein, S, Schwartz, D, Schwaber, MJ. Antimicrobial therapy for wound infections after catastrophic earthquakes. N Eng J Med. 2010;363:2571-2573.
2.Petersen, K, Riddle, MS, Danko, JR, Blazes, DL, Hayden, R, Tasker, SA, Dunne, JR. Trauma-related infections in battlefield casualties from Iraq. Ann Surg. 2007;245:803-811.
3.Wortmann, G, Weintrob, A, Barber, M, Scott, P, Zoll, ST, Eshoo, MW, Sampath, R, Ecker, DJ, Massire, C. Genotypic evolution of Acinetobacter baumannii strains in an outbreak associated with war trauma. Infect Control Hosp Epidemiol. 2008;29:53-55.
4.Scott, P, Deye, G, Srinivasan, A, et al. An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operation in Iraq. Clin Infect Dis. 2007;44:1577-1584.
5.Ake, J, Scott, P, Wortmann, G, Huang, X, Barber, M, Wang, Z, Nikolich, M, VanEcho, D, Weintrob, A, Lesho, E. Gram negative multidrug-resistant organism colonization in a U.S. military hospital in Iraq. Infect Control Hosp Epidemiol. 2011;32:545-552.
6.Dancer, SJ. Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis. 2008;8:101-113.
7.Dantas, G, Sommer, MOA, Oluwasegun, RD, Church, GM. Bacteria subsisting on antibiotics. Science. 2008;320:100-103.
8.D'Costa, VM, McGrann, KM, Hughes, DW, Wright, GW. Sampling the resistome. Science. 2006;311:374-377.
9.Kramer, A, Schwebke, I, Kampt, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6:130.
10.Tien, HC, Battad, A, Bryce, EA, et al. Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers. BMC Infect Dis. 2007;7:95.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Prehospital and Disaster Medicine
  • ISSN: 1049-023X
  • EISSN: 1945-1938
  • URL: /core/journals/prehospital-and-disaster-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed