Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T08:48:05.026Z Has data issue: false hasContentIssue false

ENTROPY-BASED AND NON-ENTROPY-BASED GOODNESS OF FIT TEST FOR THE INVERSE RAYLEIGH DISTRIBUTION WITH PROGRESSIVELY TYPE-II CENSORED DATA

Published online by Cambridge University Press:  11 March 2020

Yanbin Ma
Affiliation:
Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China E-mail: whgui@bjtu.edu.cn
Wenhao Gui
Affiliation:
Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China E-mail: whgui@bjtu.edu.cn

Abstract

In this paper, the problem of goodness of fit test for the inverse Rayleigh distribution based on progressively Type-II censored samples is studied. We develop two test statistics via entropy and propose one new non-entropy test statistic via a pivotal method. We also study the properties of these test statistics. Critical values are obtained by simulations. Then, we do power analysis of these test statistics against various alternatives under different censoring schemes. We conclude that the tests we proposed perform well against various alternatives, especially for non-monotone hazard alternatives. Finally, one real data set is analyzed.

Type
Research Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abd-Elfattah, A.M. (2011). Goodness of fit test for the generalized Rayleigh distribution with unknown parameters. Journal of Statistical Computation and Simulation 81(3): 357366.CrossRefGoogle Scholar
2.Alizadeh Noughabi, R., Alizadeh Noughabi, H., & Ebrahimi Moghaddam Behabadi, A. (2012). An entropy test for the Rayleigh distribution and power comparison. Journal of Statistical Computation and Simulation 84(1): 151158.CrossRefGoogle Scholar
3.Aslam, M. & Jun, C.H. (2009). A group acceptance sampling plan for truncated life tests based the inverse Rayleigh distribution and log-logistics distribution. Pakistan Journal of Statistics 25(2): 107119.Google Scholar
4.Azam, M., Ahmad, L., Aslam, M., & Jun, C.H. (2018). An attribute control chart using discriminant limits for monitoring process under the Weibull distribution. Production Engineering 12(5): 659665.CrossRefGoogle Scholar
5.Balakrishnan, N. & Aggarwala, R. (2000). Progressive censoring: theory, methods, and applications. Boston: Birkhauser.CrossRefGoogle Scholar
6.Balakrishnan, N. & Sandhu, R.A. (1995). A simple simulational algorithm for generating progressive type-II censored samples. American Statistician 49(2): 229230.Google Scholar
7.Baratpour, S. & Habibirad, A. (2012). Testing goodness of fit for exponential distribution based on cumulative residual entropy. Communications in Statistics 41(8): 13871396.CrossRefGoogle Scholar
8.Baratpour, S. & Rad, A.H. (2016). Exponentiality test based on the progressive type-II censoring via cumulative entropy. Communications in Statistics - Simulation and Computation 45(7): 26252637.CrossRefGoogle Scholar
9.Crescenzo, A.D. & Longobardi, M. (2009). On cumulative entropies. Journal of Statistical Planning and Inference 139(12): 40724087.CrossRefGoogle Scholar
10.Dai, Y.S., Xie, M., & Poh, K.-L. (2005). Modeling and analysis of correlated software failures of multiple types. IEEE Transactions on Reliability 54(1): 100106.CrossRefGoogle Scholar
11.Gu, C., He, Y., Xiao, H., & Min, X. (2017). Comprehensive cost oriented predictive maintenance based on mission reliability for a manufacturing system. In 2017 Annual Reliability and Maintainability Symposium (RAMS), January 23 to 26, Orlando, Florida, USA.CrossRefGoogle Scholar
12.Huang, S., Yang, J., & Min, X. (2017). A study of control chart for monitoring exponentially distributed characteristics based on type-II censored samples: control chart exponential type-II censored samples. Quality and Reliability Engineering International 33(7): 15131526.CrossRefGoogle Scholar
13.Jahanshahi, S.M.A., Rad, A.H., & Fakoor, V. (2016). A goodness-of-fit test for Rayleigh distribution based on Hellinger distance. Annals of Data Science 3(4): 111.CrossRefGoogle Scholar
14.King, T., D'Agostino, R.B., & Stephens, M.A. (1987). Goodness of fit techniques. Technometrics 29(4): 493.CrossRefGoogle Scholar
15.Krishna, H. & Goel, N. (2018). Classical and Bayesian inference in two parameter exponential distribution with randomly censored data. Computational Statistics 33(2): 127.CrossRefGoogle Scholar
16.Leão, J., Saulo, H., Bourguignon, M., Cintra, R., Rêgo, L., & Cordeiro, G.M. (2013). On some properties of the beta inverse Rayleigh distribution. Chilean Journal of Statistics 4: 111131.Google Scholar
17.Lin, X.Y., Hao, H.T., & Xie, M. (2019). Fretting characteristics and environmental reliability of Au-Sn contact pairs. Materials Science Forum 953: 115120.CrossRefGoogle Scholar
18.Liu, B., Yeh, R.H., Min, X., & Kuo, W. (2017). Maintenance scheduling for multicomponent systems with hidden failures. IEEE Transactions on Reliability PP(99): 113.Google Scholar
19.Ma, Y. & Gui, W. (2018). Pivotal inference for the inverse Rayleigh distribution based on general progressively type-II censored samples. Journal of Applied Statistics 46(5): 127.Google Scholar
20.Meintanis, S. & Iliopoulos, G. (2003). Tests of fit for the Rayleigh distribution based on the empirical Laplace transform. Annals of the Institute of Statistical Mathematics 55(1): 137151.Google Scholar
21.Nassar, M., Abo-Kasem, O.E., Zhang, C., & Dey, S. (2018). Analysis of Weibull distribution under adaptive type-II progressive hybrid censoring scheme. Journal of the Indian Society for Probability and Statistics 19: 2565.CrossRefGoogle Scholar
22.Nassar, M., Afify, A.Z., Dey, S., & Kumar, D. (2018). A new extension of Weibull distribution: properties and different methods of estimation. Journal of Computational and Applied Mathematics 336(5): 439457.CrossRefGoogle Scholar
23.Park, S., Rao, M., & Dong, W.S. (2012). On cumulative residual Kullback–Leibler information. Statistics & Probability Letters 82(11): 20252032.CrossRefGoogle Scholar
24.Qian, L., Chong, C., & Min, X. (2018). Research on reliability of PPP link routing in the communication IP network. In 2018 International Conference on Smart Grid and Electrical Automation (ICSGEA), June 9 to 10, Changsha, China.CrossRefGoogle Scholar
25.Rao, M., Chen, Y., Vemuri, B.C., & Wang, F. (2004). Cumulative residual entropy: a new measure of information. IEEE Transactions on Information Theory 50(6): 12201228.CrossRefGoogle Scholar
26.Raqab, M.Z. (2002). Inferences for generalized exponential distribution based on record statistics. Journal of Statistical Planning and Inference 104(2): 339350.CrossRefGoogle Scholar
27.Rosaiah, K. & Kantam, R.R.L. (2005). Acceptance sampling based on the inverse Rayleigh distribution. Economic Quality Control 20(2): 277286.CrossRefGoogle Scholar
28.Safavinejad, M., Jomhoori, S., & Noughabi, H.A. (2014). A density-based empirical likelihood ratio goodness-of-fit test for the Rayleigh distribution and power comparison. Journal of Statistical Computation and Simulation 85(16): 33223334.CrossRefGoogle Scholar
29.Tilbi, D. & Seddikameur, N. (2017). Chi-squared goodness of fit tests for the generalized Rayleigh distribution. Journal of Statistical Theory and Practice 11(4): 594603.CrossRefGoogle Scholar
30.Tripathi, Y.M., Petropoulos, C., Sultana, F., & Rastogi, M.K. (2018). Estimating a linear parametric function of a doubly Ocensored exponential distribution. Mathematische Operationsforschung und Statistik 52: 99114.Google Scholar
31.Viveros, R. & Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data. Technometrics 36(1): 8491.CrossRefGoogle Scholar
32.Xin, L., Tan, K., & Min, X. (2007). Optimizing product design using quantitative quality function deployment: a case study. Quality and Reliability Engineering International 23(1): 4557.Google Scholar
33.Ye, Z.S., Chen, L. -P., Tang, L.C., & Xie, M. (2014). Accelerated degradation test planning using the inverse Gaussian process. IEEE Transactions on Reliability 63(3): 750763.CrossRefGoogle Scholar
34.Zardasht, V., Parsi, S., & Mousazadeh, M. (2015). On empirical cumulative residual entropy and a goodness of fit test for exponentiality. Statistical Papers 56(3): 677688.CrossRefGoogle Scholar
35.Zhang, M., Xie, M., & Gaudoin, O. (2013). A bivariate maintenance policy for multi-state repairable systems with monotone process. IEEE Transactions on Reliability 62(4): 876886.CrossRefGoogle Scholar