Hostname: page-component-7dc689bd49-6fmns Total loading time: 0 Render date: 2023-03-20T09:06:22.690Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Brown Dwarf Binaries

Published online by Cambridge University Press:  23 April 2012

Katelyn N. Allers*
Department of Physics & Astronomy, Bucknell University, Lewisburg, PA 17837, U.S.A email:
Rights & Permissions[Opens in a new window]


HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nearly 500 brown dwarfs have been discovered in recent years. The majority of these brown dwarfs exist in the solar neighborhood, yet determining their fundamental properties (mass, age, temperature & metallicity) has proved to be quite difficult, with current estimates relying heavily on theoretical models. Binary brown dwarfs provide a unique opportunity to empirically determine fundamental properties, which can then be used to test model predictions. In addition, the observed binary fractions, separations, mass ratios, & orbital eccentricities can provide insight into the formation mechanism of these low-mass objects. I will review the results of various brown dwarf multiplicity studies, and will discuss what we have learned about the formation and evolution of brown dwarfs by examining their binary properties as a function of age and mass.

Contributed Papers
Copyright © International Astronomical Union 2012


Allen, P. R. 2007, ApJ, 668, 492CrossRefGoogle Scholar
Allers, K. N., Liu, M. C., Dupuy, T. J., & Cushing, M. C. 2010, ApJ, 715, 561CrossRefGoogle Scholar
Artigau, É., et al. , 2011, ApJ, accepted. (arXiv:1107.0768)Google Scholar
Bate, M. R. 2009, MNRAS, 392, 590CrossRefGoogle Scholar
Bergfors, C., et al. , 2010, A&A, 520, A54Google Scholar
Biller, B., Allers, K., Liu, M., Close, L. M., & Dupuy, T. 2011, ApJ, 730, 39CrossRefGoogle Scholar
Burgasser, A. J., Bardalez-Gagliuffi, D. C., & Gizis, J. E. 2011, AJ, 141, 70CrossRefGoogle Scholar
Burgasser, A. J., Reid, I. N., Siegler, N., Close, L., Allen, P., Lowrance, P., & Gizis, J. 2007, Protostars and Planets V, 427Google Scholar
Burgasser, A. J., Sitarski, B. N., Gelino, C. R., Logsdon, S. E., & Perrin, M. D. 2011, ApJ, accepted. (arXiv:1107.1484)Google Scholar
Burrows, A., Heng, K., & Nampaisarn, T. 2011, ApJ, 736, 47CrossRefGoogle Scholar
Close, L. M., et al. , 2007, ApJ, 660, 1492CrossRefGoogle Scholar
Dupuy, T. J. & Liu, M. C. 2011, ApJ, 733, 122CrossRefGoogle Scholar
Dupuy, T. J., Liu, M. C., & Ireland, M. J. 2009, ApJ, 692, 729CrossRefGoogle Scholar
Duquennoy, A. & Mayor, M. 1991, A&A, 248, 485Google Scholar
Fischer, D. A. & Marcy, G. W. 1992, ApJ, 396, 178CrossRefGoogle Scholar
Gelino, C. R., et al. , 2011, AJ, 142, 57CrossRefGoogle Scholar
Joergens, V. 2008, A&A, 492, 545Google Scholar
Konopacky, Q. M., Ghez, A. M., Barman, T. S., Rice, E. L., Bailey, J. I. III, White, R. J., McLean, I. S., & Duchêne, G. 2010, ApJ, 711, 1087CrossRefGoogle Scholar
Kouwenhoven, M. B. N., Brown, A. G. A., Portegies Zwart, S. F., & Kaper, L. 2007, A&A, 474, 77Google Scholar
Kraus, A. L. & Hillenbrand, L. A. 2009, ApJ, 703, 1511CrossRefGoogle Scholar
Liu, M. C., et al. , 2011, ApJ, in press. (arXiv:1103.0014)Google Scholar
Liu, M. C., Dupuy, T. J., & Ireland, M. J. 2008, ApJ, 689, 436CrossRefGoogle Scholar
Liu, M. C., Dupuy, T. J., & Leggett, S. K. 2010, ApJ, 722, 311CrossRefGoogle Scholar
Luhman, K. L., Joergens, V., Lada, C., Muzerolle, J., Pascucci, I., & White, R. 2007, Protostars and Planets V, 443Google Scholar
Mason, B. D., Hartkopf, W. I., Gies, D. R., Henry, T. J., & Helsel, J. W. 2009, AJ, 137, 3358CrossRefGoogle Scholar
Raghavan, D., et al. , 2010, ApJS, 190, 1CrossRefGoogle Scholar
Reipurth, B. & Clarke, C. 2001, AJ, 122, 432CrossRefGoogle Scholar
Stamatellos, D. & Whitworth, A. P. 2009, MNRAS, 392, 413CrossRefGoogle Scholar