Hostname: page-component-5d59c44645-dknvm Total loading time: 0 Render date: 2024-02-22T11:34:30.028Z Has data issue: false hasContentIssue false

Micro-Raman study of nanodiamonds from Allende meteorite

Published online by Cambridge University Press:  01 February 2008

Arnold Gucsik
Affiliation:
Max Planck Institute for Chemistry, Department of Geochemistry, Mainz, Germany email: gucsik@mpch-mainz.mpg.de
Ulrich Ott
Affiliation:
Max Planck Institute for Chemistry, Department of Geochemistry, Mainz, Germany email: gucsik@mpch-mainz.mpg.de
Edit Marosits
Affiliation:
Max Planck Institute for Chemistry, Department of Geochemistry, Mainz, Germany email: gucsik@mpch-mainz.mpg.de
Anna Karczemska
Affiliation:
Technical University of Lodz, Institute of Turbomachinery, Lodz, Poland
Marcin Kozanecki
Affiliation:
Technical University of Lodz, Department of Molecular Physics, Lodz, Poland
Marian Szurgot
Affiliation:
Technical University of Lodz, Center for Mathematics and Physics, Lodz, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have studied the Raman spectroscopic signatures of nanodiamonds from the Allende meteorite in which some portions must be of presolar origin as indicated by the isotopic compositions of various trace elements. The spectra of the meteoritic nanodiamond show a narrow peak at 1326 cm−1 and a broad band at 1590 cm−1. Compared to the intensities of these peaks, the background fluorescence is relatively high. A significant frequency shift from 1332 to 1326 cm−1, peak broadening, and appearance of a new peak at 1590 cm−1 might be due to shock effects during formation of the diamond grains. Such changes may have several origins: an increase in bond length, a change in the electron density function or charge transfer, or a combination of these factors. However, Raman spectroscopy alone does not allow distinguishing between a shock origin of the nanodiamonds and formation by a CVD process as is favored by most workers.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Anders, A. & Zinner, E. 1993, Meteoritics, 28, 490Google Scholar
Berg, T., Marosits, E., Maul, J., Nagel, P., Ott, U., Schertz, F., Schuppler, S., Sudek, Ch., & Schönhense, G. 2008, J. Appl. Phys., (submitted)Google Scholar
Buerki, P. R. & Leutwyler, S. 1991, J. Appl. Phys., 69, 3739Google Scholar
Chen, J., Deng, S. Z., Chen, J., Yu, Z. X., & Xu, N. S. 1999, Appl. Phys. Lett., 74, 3651Google Scholar
Chen, P., Huang, F., & Yun, S. 2004, Mater. Res. Bull., 39, 1583Google Scholar
Chen, P., Huang, F., & Yun, S. 2006, Diam. Rel. Mat., 15, 1400Google Scholar
Daulton, T. L., Eisenhour, D. D., Bernatowitz, T. J., Lewis, R. S., & Buseck, P. R. 1996, Geochim. Cosmochim. Acta, 60, 4853Google Scholar
Dunlop, A., Jaskierowicz, G., Ossi, P. M., & Della-Negra, S. 2007, Phys. Rev. B, 76, 155403Google Scholar
El Goresy, A., Gillet, P., Chen, M., Künstler, F., Graup, G., & Stähle, V. 2001, Am. Min., 86, 611Google Scholar
Filik, J., Harvey, N., Allan, N. L., May, P. W., Dahl, J. E. P., Liu, S., & Carlson, R. M. K. 2006, Phys. Rev. B, 035423Google Scholar
Ferrari, A. C. & Robertson, J. 2001, Phys. Rev. B., 63, 121405Google Scholar
Ferrari, A. C. & Robertson, J. 2004, Phil. Trans. R. Soc. Lond. A, 362, 2477Google Scholar
Guo, Y., Zheng, Z., Feng, Y., & Li, Y. 2004, J. Peking Univ. (Science Edition), 40, 212Google Scholar
Greshake, A., Kenkmann, T., & Scmitt, R. T. 2000, Meteorit. Planet. Sci., 35, A65Google Scholar
Huss, G. R. 1990, Nature, 347, 159Google Scholar
Huss, G. R. & Lewis, R. S. 1994, Meteoritics, 29, 791Google Scholar
Huss, G. R. & Lewis, R. S. 1995, Geochim. Cosmochim. Acta, 59, 115Google Scholar
Karczemska, A. T., Szurgot, M., Kozanecki, M., Szynkowska, M. I., Ralchenko, V., Danilenko, V. V., Louda, P., & Mitura, S. 2008, Diam. Real Mat. (submitted)Google Scholar
Karmenyan, A., Perevedentseva, E., Chiou, A., & Cheng, C-L. 2007, J. Phys:Conf. Series, 61, 517Google Scholar
Kenkmann, T., Hornemann, U., & Stöffler, D. 2002, LPSC XXXIII, abs.#1052Google Scholar
Le Guillou, C., & Rouzaud, J. N. 2007, LPSC XXXVIII, abs.#1578Google Scholar
Le Guillou, C., Rouzaud, J. N., & Brunet, F. 2006, LPSC XXXVII, abs.#1635Google Scholar
Mostefaoui, S., El Goresy, A., Hoppe, P., Gillet, Ph., & Ott, U. 2002, Earth Planet. Sci. Lett., 204, 89Google Scholar
Nasdala, L., Smith, D. C., Kaindl, R., & Zieman, M. A. 2004, In: Beran, A. and Libowitzky, E. (Eds.) Spectroscopic methods in mineralogy. EMU Notes In Mineralogy 6, Eötvös University Press, p. 281343.Google Scholar
Nuth, J. A. III & Allen, J. E. Jr. 1992, Astrophys. Space Sci., 196, 117Google Scholar
Ozima, M. & Tatsumoto, M. 1997, Geochim. Cosmochim. Acta, 61, 369Google Scholar
Richter, S., Ott, U., & Begemann, F. 1998, Nature, 391, 261Google Scholar
Russel, S. S., Arden, J. W., & Pillinger, C. T. 1991, Science, 254, 1188Google Scholar
Sun, Z., Shi, J. R., Tay, B. K., & Lau, S. P. 2000, Diam. Relat. Mater, 9, 1979Google Scholar
Tielens, A. G. G. M., Seab, C. G., Hollenbach, D. J., & McKee, C. F. 1987, ApJ (Letters), 319, L109Google Scholar
Yoshikawa, M., Mori, Y., Obata, H., Maegawa, M., Katagiri, G., Ishida, H., & Ishitani, A. 1995, Appl. Phys. Lett., 67, 694Google Scholar
Zhang, D. & Zhang, R. Q. 2005, J. Phys. Chem. B, 109, 9006Google Scholar
Zinner, E. 1998, Annu. Rev. Earth Planet. Sci., 26, 147Google Scholar