Hostname: page-component-594f858ff7-x2rdm Total loading time: 0 Render date: 2023-06-08T01:48:24.998Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Modeling of the atmospheric response to a strong decrease of the solar activity

Published online by Cambridge University Press:  05 July 2012

Eugene V. Rozanov
Affiliation:
Physikalisch-Meteorologisches Observatorium, World Radiation Center, Dorfstrasse 33, CH-7260, Davos, Switzerland email: t.egorova@pmodwrc.ch Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092, Zurich, Switzerland email: e.rozanov@pmodwrc.ch
Tatiana A. Egorova
Affiliation:
Physikalisch-Meteorologisches Observatorium, World Radiation Center, Dorfstrasse 33, CH-7260, Davos, Switzerland email: t.egorova@pmodwrc.ch
Alexander I. Shapiro
Affiliation:
Physikalisch-Meteorologisches Observatorium, World Radiation Center, Dorfstrasse 33, CH-7260, Davos, Switzerland email: t.egorova@pmodwrc.ch
Werner K. Schmutz
Affiliation:
Physikalisch-Meteorologisches Observatorium, World Radiation Center, Dorfstrasse 33, CH-7260, Davos, Switzerland email: t.egorova@pmodwrc.ch
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abreu, J., Beer, J., Steinhilber, F., Tobias, S., & Weiss, N. 2008, Geophys. Res. Lett., 35, L20109CrossRefGoogle Scholar
Barnard, L., Lockwood, M., Hapgood, M., Owens, M., Davis, C., & Steinhilber, F. 2011, Geophys. Res. Lett., 38, L16103Google Scholar
Baumgaertner, A., Jöckel, P., & Brühl, C. 2009, Atmos. Chem. Phys., 9, 2729CrossRefGoogle Scholar
Calisto, M., Usoskin, I., Rozanov, E., & Peter, T. 2011, Atmos. Chem. Phys., 11, 4547CrossRefGoogle Scholar
Egorova, T., Rozanov, E., Zubov, V., & Karol, I. 2003, Izvestiya, Atmospheric and Oceanic Physics, 39, 277Google Scholar
Egorova, T., Rozanov, E., Manzini, E. et al. , 2004, Geophys. Res Lett., 31, L06119CrossRefGoogle Scholar
Egorova, T., Rozanov, E., Zubov, V., Manzini, E., Schmutz, W., & Peter, T 2005, Atmos. Chem. Phys., 5, 1557CrossRefGoogle Scholar
Egorova, T., Rozanov, E., Ozolin, Y., Shapiro, A. V., Peter, T., & Schmutz, W. 2011, Journal of Atmospheric and Solar-Terrestrial Physics, 73, 356CrossRefGoogle Scholar
Eyring, V., Waugh, D. W., Bodeker, G. et al. , 2007, J. Geophys. Res., 112, D16303CrossRefGoogle Scholar
Feulner, G. 2011, Geophys. Res. Lett., 38, L16706CrossRefGoogle Scholar
Gray, L., Beer, J., Geller, M. et al. , 2010, Rev. Geophys., 48, RG4001CrossRefGoogle Scholar
IPCC: Intergovernmental Panel on Climate Change 2007, Cambridge University Press, 489Google Scholar
Jackman, C., Marsh, D., Vitt, F. et al. , 2008, Atmos. Chem. Phys., 8, 765CrossRefGoogle Scholar
Lockwood, M., Rouillard, A., & Finch, I. 2009, Astrophys. J., 70, 937CrossRefGoogle Scholar
Manzini, E., McFarlane, N. A., & McLandress, C. 1997, J. Geophys. Res., 102, 25751CrossRefGoogle Scholar
Morgenstern, O., Giorgetta, M. A., Shibata, K. et al. , 2010, J. Geophys. Res., 115, D00M02Google Scholar
Porter, H., Jackman, C., & Green, A. 1976, J. Chem. Phys., 65, 154CrossRefGoogle Scholar
Rozanov, E., Callis, L., Schlesinger, M., Yang, F., Andronova, N., & Zubov, V. 2005, Geophys. Res. Lett., 32, L14811CrossRefGoogle Scholar
Shapiro, A. I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M, Shapiro, A. V., & Nyeki, S. 2011, Astron. Astrophys., 539, A67CrossRefGoogle Scholar
Schraner, M., Rozanov, E., Schnadt Poberaj, C. et al. , 2008, Atmos. Chem. Phys., 8, 5957CrossRefGoogle Scholar
Semeniuk, K., Fomichev, V., McConnell, J., Fu, C., Melo, S., & Usoskin, I. 2011, Atmos. Chem. Phys., 11, 5045CrossRefGoogle Scholar
Sinnhuber, M., Kazeminejad, S., & Wissing, J. M. 2011, J. Geophys. Res., 116, A02312CrossRefGoogle Scholar
Schrijver, C.Livingston, W., Woods, T., & Mewaldt, R. 2011, Geophys. Res. Lett., 38, L06701CrossRefGoogle Scholar
Solomon, S., Rusch, D., Gerard, J., Reid, G., & Crutzen, P. 1981, Planetary Space Science, 29, 885CrossRefGoogle Scholar
SPARC CCMVal: Eyring, V., Shepherd, T., & Waugh, D. (eds) 2010, WCRP-132/WMO/TD-1526/SPARC, 5Google Scholar
Steinhilber, F., Abreu, J., Beer, J., & McCracken, K. 2010, J. Geophys. Res., 115, A01104CrossRefGoogle Scholar
Stott, P., Jones, G., & Mitchell, J. 2003, J. Clim., 16, 40792.0.CO;2>CrossRefGoogle Scholar
Usoskin, I., Kovaltsov, G., & Mironova, I. 2010, J. Geophys. Res., 115, D10302CrossRefGoogle Scholar
Usoskin, I. & Kovaltsov, G. 2006, J. Geophys. Res., 111, D21206CrossRefGoogle Scholar
WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2010. 2011, Global Ozone Reaserch and Monitoring Project Report No 52, 516Google Scholar