Skip to main content Accessibility help
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.317 Render date: 2022-08-17T00:53:25.401Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

NEA rotations and binaries

Published online by Cambridge University Press:  01 August 2006

Petr Pravec
Astronomical Institute, Academy of Sciences of the Czech Republic, Fričova 1, CZ-25165 Ondřejov, Czech Republic
A. W. Harris
Space Science Institute, 4603 Orange Knoll Ave., La Canada, CA 91011, USA
B. D. Warner
Palmer Divide Observatory, 17995 Bakers Farm Rd. Colorado Springs, CO 80908, USA
Rights & Permissions[Opens in a new window]


HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Of the nearly 3900 near-Earth asteroids (NEAs) known as of June 2006, 325 have estimated rotation periods, with most of those determined by lightcurve analysis led by a few dedicated programs. NEAs with diameters down to 10 meters have been sampled. Observed spin distribution shows a major changing point around diameter of 200 meters. Larger NEAs show a barrier against spins faster than 11 d−1 (period about 2.2 h) that shifts to slower rates (longer periods) with increasing lightcurve amplitude (i.e., with increasing equatorial elongation). The spin barrier is interpreted as a critical spin rate for bodies in a gravity regime; NEAs larger than 200 meters are predominantly bodies with tensile strength too low to withstand a centrifugal acceleration for rotation faster than the critical spin rate. The cohesionless spin barrier disappears at sizes less than 200 meters where most objects rotate too fast to be held together by self-gravitation only, so a cohesion is implied in the smaller NEAs.

The distribution of NEA spin rates in the cohesionless size range (D0.2 km) is highly non-Maxwellian, suggesting that mechanisms other than just collisions have been at work. There is a pile up just in front of the barrier, at periods 2–3 h. It may be related to a spin up mechanism crowding asteroids to the barrier. An excess of slow rotators is observed at periods longer than 30 hours. A spin-down mechanism has no obvious lower limit on spin rate; periods as long as tens of days have been observed.

Most NEAs appear to be in their basic spin states with rotation around principal axis with maximum moment of inertia. Tumbling objects (i.e., bodies in excited, non-principal axis rotation) are present and actually predominate among slow rotators with estimated damping timescales longer than the age of the solar system. A few tumblers observed among fast rotating coherent objects appear to be either more rigid or younger than the larger (cohesionless) tumblers.

An abundant population of binary systems has been found among NEAs. The fraction of binaries among NEAs larger than 0.3 km has been estimated to be 15 ± 4%. Primaries of binary systems concentrate at fast spin rates (periods 2–3 h) and low amplitudes, i.e., they lie just below the cohesionless spin barrier. The total angular momentum content in binary systems suggests that they formed from parent bodies spinning at the critical rate. The fact that a very similar population of binaries has been found among small main belt asteroids suggests a binary formation mechanism that may not be related to close encounters with the terrestrial planets.

Contributed Papers
Copyright © International Astronomical Union 2007


Behrend, R., Bernasconi, L., Roy, R., Klotz, A., Colas, F., Antonini, P., Aoun, R., Augustesen, K., Barbotin, E., Berger, N., Berrouachdi, H., Brochard, E., Cazenave, A., Cavadore, C., Coloma, J., Cotrez, V., Deconihout, S., Demeautis, C., Dorseuil, J., Dubos, G., Durkee, R., Frappa, E., Hormuth, F., Itkonen, T., Jacques, C., Kurtze, L., Laffont, A., Lavayssière, M., Lecacheux, J., Leroy, A., Manzini, F., Masi, G., Matter, D., Michelsen, R., Nomen, J., Oksanen, A., Pääkkönen, P., Peyrot, A., Pimentel, E., Pray, D., Rinner, C., Sanchez, S., Sonnenberg, K., Sposetti, S., Starkey, D., Stoss, R., Teng, J.-P., Vignand, M. & Waelchli, N., 2006, Astron. Astrophys. 446, 1177CrossRefGoogle Scholar
Bottke, W.F. Jr., Vokrouhlický, D., Rubincam, D.P. & Broz, M. 2002, in: , W.F.Bottke Jr., Cellino, A., Paolicchi, P. & Binzel, R.P. (eds.), Asteroids III, (Tucson: University of Arizona Press), p. 395.Google Scholar
Bottke, W.F. Jr., Vokrouhlický, D., Rubincam, D.P. & Nesvorný, D. 2006, Annu. Rev. Earth Planet. Sci. 34, 157.CrossRefGoogle Scholar
Burns, J.A. & Safronov, V.S. 1973, Mon. Not. Roy. Astron. Soc. 165, 403.CrossRefGoogle Scholar
Cooney, W., Gross, J., Terrell, D., Pravec, P., Kusnirak, P., Pray, D., Krugly, Yu., Kornos, L., Vilagi, J., Gajdos, S., Galad, A., Reddy, V., Dyvig, R., Nudds, S., Kanuchova, Z., Pikler, M. & Husarik, M., 2006, CBET 504Google Scholar
Dermawan, B. 2004, PhD Thesis, School of Science, Univ. of TokyoGoogle Scholar
Harris, A.W. 1994, Icarus 107, 209.CrossRefGoogle Scholar
Harris, A.W. 1996, Proc. Lunar Planet Sci. Conf. 27, 493.Google Scholar
Harris, A.W., Young, J.W., Bowell, E., Martin, L.J., Millis, R.L., Poutanen, M., Scaltriti, F., Zappalà, V., Schober, H.J., Debehogne, H. & Zeigler, K.W. 1989, Icarus 77, 171CrossRefGoogle Scholar
Higgins, D., Pravec, P., Kušnirák, P., Šarounová, L., Gajdoš, Š., Galád, A. & Világi, J. 2006a, CBET 389Google Scholar
Higgins, D., Pravec, P., Kušnirák, P., Cooney, W., Gross, J., Terrell, D. & Stephens, R. 2006b, CBET 507Google Scholar
Holsapple, K.A. 2001, Icarus 154, 432.CrossRefGoogle Scholar
Holsapple, K.A. 2004, Icarus 172, 272.CrossRefGoogle Scholar
Holsapple, K.A. 2006, Icarus, in pressGoogle Scholar
Hudson, R.S. & Ostro, S.J. 1995, Science 270, 84CrossRefGoogle Scholar
Kryszczynska, A., Kwiatkowski, T., Hirsch, R., Polinska, M., Kaminski, K. & Marciniak, A. 2005, CBET 239Google Scholar
Jakubík, M., Husárik, M., Világi, J., Gajdoš, Š., Galád, A., Pravec, P., Kušnirak, P., Cooney, W., Gross, J., Terrell, D., Pray, D. & Stephens, R. 2005, CBET 270Google Scholar
Kaasalainen, M. 2001, Astron. Astrophys. 376, 302.CrossRefGoogle Scholar
Krugly, Yu.N., Belskaya, I.N., Shevchenko, V.G., Chiorny, V.G., Velichko, F.P., Erikson, A., Mottola, S., Hahn, G., Nathues, A., Neukum, G., Gaftonyuk, N.M. & Dotto, E. 2002, Icarus 158, 294.CrossRefGoogle Scholar
Margot, J.-L. et al. ., 2006, This proceedingsGoogle Scholar
Mottola, S., de Angelis, G., diMartino, M. Martino, M., Erikson, A., Hahn, G. & Neukum, G. 1995a, Icarus 117, 62.CrossRefGoogle Scholar
Mottola, S., Sears, W.D., Erikson, A., Harris, A.W., Young, J.W., Hahn, G., Dahlgren, M., Mueller, B.E.A., Owen, B., Gil-Hutton, R., Licandro, J., Barucci, M.A., Angeli, C., Neukum, G., Lagerkvist, C.-I. & Lahulla, J.F. 1995b, Planet. Space Sci. 43, 1609.CrossRefGoogle Scholar
Ostro, S.J., Giorgini, J. & Benner, L.A.M. 2006, This proceedingsGoogle Scholar
Pravec, P. & Harris, A.W. 2000, Icarus 148, 12.CrossRefGoogle Scholar
Pravec, P., Wolf, M. & Šarounová, L. 1998, Icarus 136, 124.CrossRefGoogle Scholar
Pravec, P., Harris, A.W., Scheirich, P., Kušnirák, P., Šarounová, L., Hergenrother, C.W., Mottola, S., Hicks, M.D., Masi, G., Krugly, Yu.N., Shevchenko, V.G., Nolan, M.C., Howell, E.S., Kaasalainen, M., Galád, A., Brown, P., Degraff, D.R., Lambert, J.V., Cooney, W.R. & Foglia, S. 2005, Icarus 173, 108.CrossRefGoogle Scholar
Pravec, P., Scheirich, P., Kušnirák, P., Šarounová, L., Mottola, S., Hahn, G., Brown, P., Esquerdo, G., Kaiser, N., Krzeminski, Z., Pray, D.P., Warner, B.D., Harris, A.W., Nolan, M.C., Howell, E.S., Benner, L.A.M., Margot, J.-L., Galád, A., Holliday, W., Hicks, M.D., Krugly, Yu.N., Tholen, D., Whiteley, R., Marchis, F., Degraff, D.R., Grauer, A., Larson, S., Velichko, F.P., Cooney, W.R., Stephens, R., Zhu, J., Kirsch, K., Dyvig, R., Snyder, L., Reddy, V., Moore, S., Gajdoš, Š., Világi, J., Masi, G., Higgins, D., Funkhouser, G., Knight, B., Slivan, S., Behrend, R., Grenon, M., Burki, G., Roy, R., Demeautis, C., Matter, D., Waelchli, N., Revaz, Y., Klotz, A., Rieugné, M., Thierry, P., Cotrez, V., Brunetto, L. & Kober, G. 2006, Icarus 181, 63.CrossRefGoogle Scholar
Pray, D., Pravec, P., Kušnirák, P., Cooney, W., Gross, J., Terrell, D., Galád, A., Gajdoš, Š., Világi, J. & Durkee, R. 2006a, CBET 353Google Scholar
Pray, D., Pravec, P., Pikler, M., Husárik, M., Stephens, R., Masi, G., Durkee, R. & Goncalves, R. 2006b, CBET 617Google Scholar
Reddy, V., Dyvig, R., Pravec, P. & Kušnirák, P. 2005, IAU Circ. 8483Google Scholar
Reddy, V., Dyvig, R., Pravec, P., Kušnirák, P., Gajdoš, Š., Galád, A. & Kornoš, L. 2006a, CBET 384Google Scholar
Reddy, V., Dyvig, R.R., Pravec, P., Kušnirák, P., Kornoš, L., Világi, J., Galád, A., Gajdoš, Š., Pray, D.P., Benner, L.A.M., Nolan, M.C., Giorgini, J.D., Ostro, S.J. & Abell, P.A. 2006b, 37nd Annual Lunar and Planetary Science Conference March 13-17, 2006, League City, Texas, abstract no. 1755Google Scholar
Richardson, D.C., Elankumaran, P. & Sanderson, R.E. 2005, Icarus 173, 349CrossRefGoogle Scholar
Warner, B.D., Pravec, P., Harris, A.W., Galad, A., Kušnirák, P., Pray, D.P., Brown, P.Krzeminski, Z., Cooney Jr, W.R., Higgins, D., Masi, G., Gross, J., Terrell, D., Reddy, V., Dyvig, R., Behrend, R., Strajnic, J., Manzini, F., Revaz, Y., Ravonel, M. & Hoffmann, T. 2005,In: Asteroids, Comets, Meteors 2005, IAU Symp. 229 Abstract No. 10.14Google Scholar
Warner, B.D., Pray, D.P., Pravec, P., Kušnirák, P., Cooney, W. Jr., Gross, J. & Terrell, D. 2006, Minor Planet Bull. 3, 57Google Scholar
You have Access
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

NEA rotations and binaries
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

NEA rotations and binaries
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

NEA rotations and binaries
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *