Skip to main content
×
Home
    • Aa
    • Aa

NEA rotations and binaries

  • Petr Pravec (a1), A. W. Harris (a2) and B. D. Warner (a3)
Abstract
Abstract

Of the nearly 3900 near-Earth asteroids (NEAs) known as of June 2006, 325 have estimated rotation periods, with most of those determined by lightcurve analysis led by a few dedicated programs. NEAs with diameters down to 10 meters have been sampled. Observed spin distribution shows a major changing point around diameter of 200 meters. Larger NEAs show a barrier against spins faster than 11 d−1 (period about 2.2 h) that shifts to slower rates (longer periods) with increasing lightcurve amplitude (i.e., with increasing equatorial elongation). The spin barrier is interpreted as a critical spin rate for bodies in a gravity regime; NEAs larger than 200 meters are predominantly bodies with tensile strength too low to withstand a centrifugal acceleration for rotation faster than the critical spin rate. The cohesionless spin barrier disappears at sizes less than 200 meters where most objects rotate too fast to be held together by self-gravitation only, so a cohesion is implied in the smaller NEAs.

The distribution of NEA spin rates in the cohesionless size range (D0.2 km) is highly non-Maxwellian, suggesting that mechanisms other than just collisions have been at work. There is a pile up just in front of the barrier, at periods 2–3 h. It may be related to a spin up mechanism crowding asteroids to the barrier. An excess of slow rotators is observed at periods longer than 30 hours. A spin-down mechanism has no obvious lower limit on spin rate; periods as long as tens of days have been observed.

Most NEAs appear to be in their basic spin states with rotation around principal axis with maximum moment of inertia. Tumbling objects (i.e., bodies in excited, non-principal axis rotation) are present and actually predominate among slow rotators with estimated damping timescales longer than the age of the solar system. A few tumblers observed among fast rotating coherent objects appear to be either more rigid or younger than the larger (cohesionless) tumblers.

An abundant population of binary systems has been found among NEAs. The fraction of binaries among NEAs larger than 0.3 km has been estimated to be 15 ± 4%. Primaries of binary systems concentrate at fast spin rates (periods 2–3 h) and low amplitudes, i.e., they lie just below the cohesionless spin barrier. The total angular momentum content in binary systems suggests that they formed from parent bodies spinning at the critical rate. The fact that a very similar population of binaries has been found among small main belt asteroids suggests a binary formation mechanism that may not be related to close encounters with the terrestrial planets.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      NEA rotations and binaries
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      NEA rotations and binaries
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      NEA rotations and binaries
      Available formats
      ×
Copyright
References
Hide All
Behrend R., Bernasconi L., Roy R., Klotz A., Colas F., Antonini P., Aoun R., Augustesen K., Barbotin E., Berger N., Berrouachdi H., Brochard E., Cazenave A., Cavadore C., Coloma J., Cotrez V., Deconihout S., Demeautis C., Dorseuil J., Dubos G., Durkee R., Frappa E., Hormuth F., Itkonen T., Jacques C., Kurtze L., Laffont A., Lavayssière M., Lecacheux J., Leroy A., Manzini F., Masi G., Matter D., Michelsen R., Nomen J., Oksanen A., Pääkkönen P., Peyrot A., Pimentel E., Pray D., Rinner C., Sanchez S., Sonnenberg K., Sposetti S., Starkey D., Stoss R., Teng J.-P., Vignand M. & Waelchli N., 2006, Astron. Astrophys. 446, 1177
Bottke W.F. Jr., Vokrouhlický D., Rubincam D.P. & Broz M. 2002, in: W.F.Bottke Jr., Cellino A., Paolicchi P. & Binzel R.P. (eds.), Asteroids III, (Tucson: University of Arizona Press), p. 395.
Bottke W.F. Jr., Vokrouhlický D., Rubincam D.P. & Nesvorný D. 2006, Annu. Rev. Earth Planet. Sci. 34, 157.
Burns J.A. & Safronov V.S. 1973, Mon. Not. Roy. Astron. Soc. 165, 403.
Cooney W., Gross J., Terrell D., Pravec P., Kusnirak P., Pray D., Krugly Yu., Kornos L., Vilagi J., Gajdos S., Galad A., Reddy V., Dyvig R., Nudds S., Kanuchova Z., Pikler M. & Husarik M., 2006, CBET 504
Dermawan B. 2004, PhD Thesis, School of Science, Univ. of Tokyo
Harris A.W. 1994, Icarus 107, 209.
Harris A.W. 1996, Proc. Lunar Planet Sci. Conf. 27, 493.
Harris A.W., Young J.W., Bowell E., Martin L.J., Millis R.L., Poutanen M., Scaltriti F., Zappalà V., Schober H.J., Debehogne H. & Zeigler K.W. 1989, Icarus 77, 171
Higgins D., Pravec P., Kušnirák P., Šarounová L., Gajdoš Š., Galád A. & Világi J. 2006a, CBET 389
Higgins D., Pravec P., Kušnirák P., Cooney W., Gross J., Terrell D. & Stephens R. 2006b, CBET 507
Holsapple K.A. 2001, Icarus 154, 432.
Holsapple K.A. 2004, Icarus 172, 272.
Holsapple K.A. 2006, Icarus, in press
Hudson R.S. & Ostro S.J. 1995, Science 270, 84
Kryszczynska A., Kwiatkowski T., Hirsch R., Polinska M., Kaminski K. & Marciniak A. 2005, CBET 239
Jakubík M., Husárik M., Világi J., Gajdoš Š., Galád A., Pravec P., Kušnirak P., Cooney W., Gross J., Terrell D., Pray D. & Stephens R. 2005, CBET 270
Kaasalainen M. 2001, Astron. Astrophys. 376, 302.
Krugly Yu.N., Belskaya I.N., Shevchenko V.G., Chiorny V.G., Velichko F.P., Erikson A., Mottola S., Hahn G., Nathues A., Neukum G., Gaftonyuk N.M. & Dotto E. 2002, Icarus 158, 294.
Margot J.-L. et al. ., 2006, This proceedings
Mottola S., de Angelis G., di Martino, M., Erikson A., Hahn G. & Neukum G. 1995a, Icarus 117, 62.
Mottola S., Sears W.D., Erikson A., Harris A.W., Young J.W., Hahn G., Dahlgren M., Mueller B.E.A., Owen B., Gil-Hutton R., Licandro J., Barucci M.A., Angeli C., Neukum G., Lagerkvist C.-I. & Lahulla J.F. 1995b, Planet. Space Sci. 43, 1609.
Ostro S.J., Giorgini J. & Benner L.A.M. 2006, This proceedings
Pravec P. & Harris A.W. 2000, Icarus 148, 12.
Pravec P., Wolf M. & Šarounová L. 1998, Icarus 136, 124.
Pravec P., Harris A.W., Scheirich P., Kušnirák P., Šarounová L., Hergenrother C.W., Mottola S., Hicks M.D., Masi G., Krugly Yu.N., Shevchenko V.G., Nolan M.C., Howell E.S., Kaasalainen M., Galád A., Brown P., Degraff D.R., Lambert J.V., Cooney W.R. & Foglia S. 2005, Icarus 173, 108.
Pravec P., Scheirich P., Kušnirák P., Šarounová L., Mottola S., Hahn G., Brown P., Esquerdo G., Kaiser N., Krzeminski Z., Pray D.P., Warner B.D., Harris A.W., Nolan M.C., Howell E.S., Benner L.A.M., Margot J.-L., Galád A., Holliday W., Hicks M.D., Krugly Yu.N., Tholen D., Whiteley R., Marchis F., Degraff D.R., Grauer A., Larson S., Velichko F.P., Cooney W.R., Stephens R., Zhu J., Kirsch K., Dyvig R., Snyder L., Reddy V., Moore S., Gajdoš Š., Világi J., Masi G., Higgins D., Funkhouser G., Knight B., Slivan S., Behrend R., Grenon M., Burki G., Roy R., Demeautis C., Matter D., Waelchli N., Revaz Y., Klotz A., Rieugné M., Thierry P., Cotrez V., Brunetto L. & Kober G. 2006, Icarus 181, 63.
Pray D., Pravec P., Kušnirák P., Cooney W., Gross J., Terrell D., Galád A., Gajdoš Š., Világi J. & Durkee R. 2006a, CBET 353
Pray D., Pravec P., Pikler M., Husárik M., Stephens R., Masi G., Durkee R. & Goncalves R. 2006b, CBET 617
Reddy V., Dyvig R., Pravec P. & Kušnirák P. 2005, IAU Circ. 8483
Reddy V., Dyvig R., Pravec P., Kušnirák P., Gajdoš Š., Galád A. & Kornoš L. 2006a, CBET 384
Reddy V., Dyvig R.R., Pravec P., Kušnirák P., Kornoš L., Világi J., Galád A., Gajdoš Š., Pray D.P., Benner L.A.M., Nolan M.C., Giorgini J.D., Ostro S.J. & Abell P.A. 2006b, 37nd Annual Lunar and Planetary Science Conference March 13-17, 2006, League City, Texas, abstract no. 1755
Richardson D.C., Elankumaran P. & Sanderson R.E. 2005, Icarus 173, 349
Warner B.D., Pravec P., Harris A.W., Galad A., Kušnirák P., Pray D.P., Brown P. Krzeminski Z., Cooney Jr W.R., Higgins D., Masi G., Gross J., Terrell D., Reddy V., Dyvig R., Behrend R., Strajnic J., Manzini F., Revaz Y., Ravonel M. & Hoffmann T. 2005,In: Asteroids, Comets, Meteors 2005, IAU Symp. 229 Abstract No. 10.14
Warner B.D., Pray D.P., Pravec P., Kušnirák P., Cooney W. Jr., Gross J. & Terrell D. 2006, Minor Planet Bull. 3, 57
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the International Astronomical Union
  • ISSN: 1743-9213
  • EISSN: 1743-9221
  • URL: /core/journals/proceedings-of-the-international-astronomical-union
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 29 *
Loading metrics...

Abstract views

Total abstract views: 43 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.