Skip to main content
×
×
Home

Fuel selection by the kidney: adaptation to starvation

  • Gabriel Baverel (a1), Bernard Ferrier (a1) and Mireille Martin (a1)
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fuel selection by the kidney: adaptation to starvation
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fuel selection by the kidney: adaptation to starvation
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fuel selection by the kidney: adaptation to starvation
      Available formats
      ×
Abstract
Copyright
References
Hide All
Adler, S. & Preuss, H. G. (1972). Interrelationships between citrate metabolism, ammoniagenesis, and gluconeogenesis in renal cortex in vitro. Journal of Laboratory and Clinical Medicine 79, 505515.
Anaizi, N. H. & Cohen, J. J. (1991). Kinetics of glucose decarboxylation in the substrate-limited isolated perfused kidney. Renal Physiology and Biochemistry 14, 8191.
Bagnasco, S., Good, D., Balaban, R. & Burg, M. (1985). Lactate production in isolated segments of the rat nephron. American Journal of Physiology 248, F522F526.
Barac-Nieto, M. (1986). Renal reabsorption and utilization of hydroxybutyrate and acetoacetate in starved rats. American Journal of Physiology 251, F257F265.
Bartlett, S., Espinal, J., Janssens, P. & Ross, B. D. (1984). The influence of renal function on lactate and glucose metabolism. Biochemical Journal 219, 7378.
Bastin, J., Cambon, N., Thompson, M., Lowry, O. H. & Burch, H. (1987). Change in energy reserves in different segments of the nephron during brief ischemia. Kidney International 31, 12391247.
Baverel, G. & Lund, P. (1979). A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochemical Journal 184, 599606.
Baverel, G., Michoudet, C. & Martin, G. (1984). Role of fatty acids in simultaneous regulation of flux through glutaminase and glutamine synthetase in rat kidney cortex. In Glutamine Metabolism in Mammalian Tissues, pp. 187202 [Häussinger, D. and Sies, H., editors]. Berlin: Springer Verlag.
Bennett, F. I., Alexander, J. E., Roobol, A. & Alleyne, G. A. O. (1975). Effect of starvation on renal metabolism in the rat. Kidney International 7, 380384.
Bowman, R. H. (1970). Gluconeogenesis in the isolated perfused rat kidney. Journal of Biological Chemistry 245, 16041612.
Burch, H. B., Bross, T. E., Brooks, C. A., Cole, B. R. & Lowry, O. H. (1984). The distribution of six enzymes of oxidative metabolism along the rat nephron. Journal of Histochemistry and Cytochemistry 32, 731736.
Burch, H. B., Choi, S., McCarthy, W. Z., Wong, P. Y. & Lowry, O. H. (1978 a). The location of glutamine synthetase within the rat and the rabbit nephron. Biochemical and Biophysical Research Communications 82, 498505.
Burch, H. B., Hays, A. E., McCreary, M. D., Cole, B. R., Chi, M. M. Y., Dence, C. N. & Lowry, O. H. (1982). Relationships in different parts of the nephron between enzymes of glycerol metabolism and the metabolite changes which result from large glycerol loads. Journal of Biological Chemistry 257, 36763679.
Burch, H. B., Lowry, O. H., Perry, S. G., Fan, L. & Fagioli, S. (1974). Effect of age on pyruvate kinase and lactate dehydrogenase distribution in rat kidney. American Journal of Physiology 226, 12271231.
Burch, H. B., Narins, R. G., Chu, C., Fagioli, S., Choi, S., McCarthy, W. & Lowry, O. H. (1978 b). Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. American Journal of Physiology 235, F246F253.
Burckardt, G. & Ullrich, K. J. (1989). Organic anion transport across the contraluminal membrane. Dependence on sodium. Kidney International 36, 370377.
Chauvin, M. F., Mégnin-Chanet, F., Martin, G., Lhoste, J. M. & Baverel, G. (1994). The rabbit kidney tubule utilizes glucose for glutamine synthesis. A 13C NMR study. Journal of Biological Chemistry 269, 2602526033.
Chin, E., Zhou, J. & Bondy, C. (1993). Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney. Journal of Clinical Investigation 91, 18101815.
Churchill, P. C., Belloni, F. L. & Churchill, M. C. (1973). Net glucose release in the rat. American Journal of Physiology 225, 528531.
Cohen, J. J. & Barac-Nieto, M. (1973). Renal metabolism of substrates in relation to renal function. In Handbook of Physiology. Section 8: Renal Physiology, pp. 9091011 [Orloff, J. and Berliner, R. W., editors]. Washington, D.C.: American Physiological Society.
Cohen, J. J., Kook, Y. J. & Little, J. R. (1977). Substrate-limited function and metabolism of the isolated perfused rat kidney: Effects of lactate and glucose. Journal of Physiology 266, 103121.
Curthoys, N. P. & Lowry, O. H. (1973). The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic and alkalotic rat kidney. Journal of Biological Chemistry 248, 162168.
Damian, A. C. & Pitts, R. F. (1970). Rates of glutaminase I and glutamine synthetase reactions in rat kidney in vivo. American Journal of Physiology 218, 12491255.
Dominguez, J. H., Camp, C., Maianu, L. & Garvey, W. T. (1992). Glucose transporters of rat proximal tubule: differential expression and subcellular distribution. American Journal of Physiology 262, F807F812.
Elhamri, M., Martin, M., Ferrier, B. & Baverel, G. (1993). Substrate uptake and utilization by the kidney of fed and starved rats in vivo. Renal Physiology and Biochemistry 16, 311324.
Ferrier, B., Martin, M., Janbon, B. & Baverel, G. (1992). Transport of β-hydroxybutyrate and acetoacetate along the rat nephron: a micropuncture study. American Journal of Physiology 262, F762F769.
Foreman, J. W., Reynolds, R. A., Ginkinger, K. & Segal, S. (1983). Effect of acidosis on glutamine transport by isolated renal brush-border and basolateral-membrane vesicles. Biochemical Journal 212, 713720.
Frohnert, P. P., Hohman, B., Zwiebel, R. & Baumann, K. (1970). Free flow micropuncture studies of glucose transport in the rat nephron. Pflügers Archiv 315, 6685.
Garcia, M. L., Benavides, J. & Valdivieso, F. (1980). Ketone body transport in renal brush-border membrane vesicles. Biochimica et Biophysica Acta 600, 922930.
Goldstein, L. (1987). Renal substrate utilization in normal and acidotic rats. American Journal of Physiology 253, F351F357.
Goldstein, L., Boylan, J. M. & Schröck, H. (1980). Adaptation of renal ammonia production in the diabetic ketoacidotic rat. Kidney International 17, 5765.
Goldstein, L., Solomon, R. J., Perlman, D. F., McLaughlin, P. M. & Taylor, M. A. (1982). Ketone body effects on glutamine metabolism in isolated kidneys and mitochondria. American Journal of Physiology 243, F181F187.
Good, D. & Burg, M. (1984). Ammonia production by individual segments of the rat nephron. Journal of Clinical Investigation 73, 602610.
Guder, W. G. & Morel, F. (1992). Biochemical characterization of individual nephron segments. In Handbook of Physiology. Section 8: Renal Physiology, vol. 2, pp. 21192164 [Windhager, E. E., editor]. Oxford: Oxford University Press.
Guder, W. G. & Ross, B. D. (1984). Enzyme distribution along the nephron. Kidney International 26, 101111.
Guder, W. G. & Schmidt, U. (1976). Substrate and oxygen dependence of renal metabolism. Kidney International 10, S32S38.
Guder, W. G., Wagner, S. & Wirthensohn, G. (1986). Metabolic fuels along the nephron: Pathways and intracellular mechanisms of interaction. Kidney International 29, 4145.
Guder, W. G. & Wieland, O. H. (1972). Metabolism of isolated kidney tubules. Additive effects of parathyroid hormone and free fatty acids on renal gluconeogenesis. European Journal of Biochemistry 31, 6979.
Guder, W. G., Wiesner, W., Stukowski, B. & Wieland, O. (1971). Metabolism of isolated kidney tubules. Oxygen consumption, gluconeogenesis and the effect of cyclic nucleotides in tubules from starved rats. Hoppe-Seyler's Zeitschrift für physiologische Chemie 352, 13191328.
Gullans, S. R., Harris, S. I. & Mandel, L. J. (1984). Glucose-dependent respiration in suspensions of rabbit cortical tubules. Journal of Membrane Biology 78, 257262.
Halperin, M., Jungas, R. L., Pichette, C. & Goldstein, M. (1982). A quantitative analysis of renal ammoniagenesis and energy balance: a theoretical approach. Canadian Journal of Physiology and Pharmacology 60, 14311435.
Hems, D. A. (1972). Metabolism of glutamine and glutamic acid by isolated perfused kidneys of normal and acidotic rats. Biochemical Journal 130, 671680.
Hems, D. A. & Gaja, G. (1972). Carbohydrate metabolism in the isolated perfused rat kidney. Biochemical Journal 128, 421426.
Hohenegger, M. & Schuh, H. (1980). Uptake and fatty acid synthesis by the rat kidney. International Journal of Biochemistry 12, 169172.
Hohenegger, M., Wittmann, G. & Dalheim, H. (1973). Oxidation of fatty acids by different zones of the rat kidney. Pflügers Archiv 341, 105112.
Hus-Citharel, A. & Morel, F. (1986). Coupling of metabolic CO2 production to ion transport in isolated rat thick ascending limbs and collecting tubules. Pflügers Archiv 407, 421427.
Hwang, J. J. & Curthoys, N. P. (1991). Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenolpyruvate carboxykinase gene expression. Journal of Biological Chemistry 266, 93929396.
Iynedjian, P. B., Ballard, F. J. & Hanson, R. W. (1975). The regulation of phosphoenolpyruvate carboxykinase (GTP) synthesis in rat kidney cortex. The role of acid-base balance and glucocorticoids. Journal of Biological Chemistry 250, 55965603.
Iynedjian, P. B. & Hanson, R. W. (1977). Messenger RNA for renal phosphoenolpyruvate carboxykinase (GTP). Journal of Biological Chemistry 252, 83988403.
Iynedjian, P. B. & Peters, G. (1974). Phosphoenolpyruvate carboxykinase and gluconeogenesis in renal cortex of starved rats. American Journal of Physiology 226, 12811285.
Janssens, P., Hems, R. & Ross, B. (1980). The metabolic fate of lactate in renal cortical tubules. Biochemical Journal 190, 2737.
Jörgensen, K. E. & Sheikh, M. I. (1985). Mechanisms of uptake of ketone bodies by luminal-membrane vesicles. Biochimica et Biophysica Acta 814, 2334.
Jung, K. Y., Uchida, S. & Endou, H. (1989). Nephrotoxicity assessment by measuring cellular ATP content. I. Substrate specificities in the maintenance of ATP content in isolated rat nephron segments. Toxicology and Applied Pharmacology 100, 369382.
Kamm, D. E. & Strope, G. L. (1972). The effects of acidosis and alkalosis on the metabolism of glutamine and glutamate in renal cortex slices. Journal of Clinical Investigation 51, 12511263.
Kante, A., Malki, M. C., Coquard, C. & Latruffe, N. (1990). Metabolic control of the expression of mitochondrial D-β-hydroxybutyrate dehydrogenase, a ketone body converting enzyme. Biochimica et Biophysica Acta 1033, 291297.
Kida, K., Nakajo, S., Kamiya, F., Toyama, Y., Nishio, T. & Nakagawa, H. (1978). Renal net glucose release in vivo and its contribution to blood glucose in rats. Journal of Clinical Investigation 62, 721726.
Klein, K. L., Wang, M. S., Torikai, S., Davidson, W. D. & Kurokawa, K. (1981). Substrate oxidation by isolated single nephron segments of the rat. Kidney International 20, 2935.
Krebs, H. A., Bennett, D. A. H., de Gasquet, P., Gascoyne, T. & Yoshida, T. (1963). Renal gluconeogenesis. The effect of diet on the gluconeogenic capacity of rat-kidney-cortex slices. Biochemical Journal 86, 2227.
Krebs, H. A., Hems, R., Weidemann, M. J. & Speake, R. N. (1966). The fate of isotopic carbon in kidney cortex synthesizing glucose from lactate. Biochemical Journal 101, 242248.
Krebs, H. A., Speake, R. N. & Hems, R. (1965). Acceleration of renal gluconeogenesis by ketone bodies and fatty acids. Biochemical Journal 94, 712720.
Kriz, W. & Bankir, L. (1988). A standard nomenclature for structures of the kidney. Kidney International 33, 17.
Kurokawa, K. K., Nagami, G. & Yamaguchi, D. T. (1985). Transport and substrate metabolism of the kidney. In Renal Biochemistry, pp. 176223 [Kinne, R. K. H., editor]. Amsterdam: Elsevier Science Publishers B. V.
Kurokawa, K. & Rasmussen, H. (1973). Ionic control of renal gluconeogenesis. III. The effects of changes in pH, pCO2, and bicarbonate concentration. Biochimica et Biophysica Acta 313, 4258.
Le Bouffant, F., Hus-Citharel, A. & Morel, F. (1984). Metabolic CO2 production by isolated single pieces of rat distal nephron. Pflügers Archiv 401, 346353.
Le Hir, M. & Dubach, U. C. (1982 a). Activities of enzymes of the tricarboxylic acid cycle in segments of the rat nephron. Pflügers Archiv 395, 239245.
Le Hir, M. & Dubach, U. C. (1982 b). Peroxisomal and mitochondrial beta-oxidation in the rat kidney: Distribution of fatty-acyl-coenzyme A oxidase and 3-hydroxyacyl-coenzyme A dehydrogenase activities along the nephron. Journal of Histochemistry and Cytochemistry 30, 441444.
Leichtweiss, H. P., Lübbers, D. W., Weiss, C., Baumgärtl, H. & Reschke, W. (1969). The oxygen supply of the rat kidney: Measurements of intrarenal pO2. Pflügers Archiv 309, 328349.
Lemieux, G., Baverel, G., Vinay, P. & Wadoux, P. (1976). Glutamine synthetase and glutamyltransferase in the kidney of man, dog and rat. American Journal of Physiology 231, 10681073.
Lowry, M. & Ross, B. D. (1980). Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis. Biochemical Journal 190, 771780.
Meisner, H. M., Loose, D. S. & Hanson, R. W. (1985). Effect of hormones on transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase (GTP) in rat kidney. Biochemistry 24, 421425.
Michoudet, C., Chauvin, M. F. & Baverel, G. (1994). Glutamine synthesis from glucose and ammonium chloride by guinea-pig kidney tubules. Biochemical Journal 297, 6974.
Needleman, P., Passonneau, J. & Lowry, O. H. (1968). Distribution of glucose and related metabolites in rat kidney. American Journal of Physiology 215, 655659.
Nishiitsuji, J. M., Ross, B. D. & Krebs, H. A. (1967). Metabolic activities of the isolated perfused rat kidney. Biochemical Journal 103, 852862.
Nonoguchi, H., Takehara, Y. & Endou, H. (1986). Intra- and inter-nephron heterogeneity of ammoniagenesis in rats: effects of chronic metabolic acidosis and potassium depletion. Pflügers Archiv 407, 245251.
Owen, O. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. (1969). Liver and kidney metabolism during prolonged starvation. Journal of Clinical Investigation 48, 574583.
Paulussen, R. J. A., Jansen, G. P. M. & Veerkamp, J. H. (1986). Fatty acid-binding capacity of cytosolic proteins of various rat tissues: effect of postnatal development, starvation, sex, clofibrate feeding and light cycle. Biochimica et Biophysica Acta 877, 342349.
Pfaller, W. & Rittinger, M. (1980). Quantitative morphology of the rat kidney. International Journal of Biochemistry 12, 1722.
Pollock, A. S. (1989). Induction of renal phosphoenolpyruvate carboxykinase mRNA: suppressive effect of glucose. American Journal of Physiology 257, F145F151.
Richterich, R. W. & Goldstein, L. (1958). Distribution of glutamine metabolizing enzymes and production of urinary ammonia in the mammalian kidney. American Journal of Physiology 195, 316320.
Robinson, A. M. & Williamson, D. H. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews 60, 143187.
Robinson, J. & Newsholme, E. A. (1969). The effects of dietary conditions and glycerol concentration on glycerol uptake by rat liver and kidney-cortex slices. Biochemical Journal 112, 449453.
Ross, B. D., Epstein, F. & Leaf, A. (1973). Sodium reabsorption in the perfused rat kidney. American Journal of Physiology 225, 11651171.
Ross, B. D. & Guder, W. G. (1982). Heterogeneity and compartmentation in the kidney. In Metabolic Compartmentation, pp. 363409 [Sies, H., editor]. London: Academic Press.
Salto, R., Oliver, J., del Mar Sola, M. & Vargas, A. M. (1991). Distribution of pyruvate carboxylase along the rat nephron: An immunological and enzymatic study. Kidney International 39, 11621167.
Silbernagl, S. (1980). Tubular reabsorption of L-glutamine studied by free-flow micropuncture and micro-perfusion of rat kidney. International Journal of Biochemistry 12, 916.
Simpson, D. (1983). Citrate excretion: a window on renal metabolism. American Journal of Physiology 244, F223F234.
Schmidt, U. & Dubach, U. C. (1976). Acute renal failure in the folate-treated rat: Early metabolic changes in various structures of the nephron. Kidney International 10, S39S45.
Schmidt, U., Marosvari, I. & Dubach, U. C. (1975). Renal metabolism of glucose: anatomical sites of hexokinase activity in the rat nephron. FEBS Letters 53, 2628.
Schoolwerth, A. C. & Gesek, F. A. (1990). Intramitochondrial pH and ammonium production in rat and dog kidney cortex. Mineral and Electrolyte Metabolism 16, 264269.
Schoolwerth, A. C., Nazar, B. L. & LaNoue, K. F. (1978). Glutamate dehydrogenase activation and ammonia formation by rat kidney mitochondria. Journal of Biological Chemistry 253, 61776183.
Squires, E. J., Hall, D. E. & Brosnan, J. T. (1976). Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats. Biochemical Journal 160, 125128.
Tannenbaum, J., Purkerson, M. L. & Klahr, S. (1983). Effect of unilateral ureteral obstruction on metabolism of renal lipids in the rat. American Journal of Physiology 245, F254F262.
Thorens, B., Lodish, H. F. & Brown, D. (1990). Differential localization of two glucose transporter isoforms in rat kidney. American Journal of Physiology 259, C286C294.
Trimble, M. E. (1980). Uptake and utilization of long chain and medium chain fatty acids by the perfused rat kidney. International Journal of Biochemistry 12, 173176.
Trimble, M. E. (1982). Long chain fatty acid transport by the perfused rat kidney. Renal Physiology 5, 136142.
Trimble, M. E. (1989). Mediated transport of long-chain fatty acids by rat renal basolateral membranes. American Journal of Physiology 257, F539F546.
Ullrich, K. J. & Papavassiliou, F. (1986). Contraluminal transport of small aliphatic carboxylates in the proximal tubule of the rat kidney in situ. Pflügers Archiv 407, 488492.
Underwood, A. H. & Newsholme, E. A. (1967). Control of glycolysis and gluconeogenesis in rat kidney cortex slices. Biochemical Journal 104, 300305.
Watford, M., Vinay, P., Lemieux, G. & Gougoux, A. (1980). The regulation of glucose and of pyruvate formation from glutamine and citric-acid-cycle intermediates in the kidney cortex of rats, dogs, rabbits and guinea-pigs. Biochemical Journal 188, 741748.
Weidemann, M. J. & Krebs, H. A. (1969). The fuel of respiration of rat kidney cortex. Biochemical Journal 112, 149166.
Weinstein, S. W. & Szyjewick, J. (1976). Single nephron function and renal oxygen consumption during rapid volume expansion. American Journal of Physiology 231, 11661172.
Windus, D. W., Cohn, D. E. & Heifets, M. (1986). Effect of fasting on citrate transport by brush border membrane of rat kidney. American Journal of Physiology 251, F678F682.
Wirthensohn, G., Gerl, M. & Guder, W. (1980). Triacylglycerol metabolism in kidney cortex and outer medulla. International Journal of Biochemistry 12, 157161.
Wirthensohn, G. & Guder, W. G. (1980). Triacylglycerol metabolism in isolated rat kidney cortex tubules. Biochemical Journal 186, 317324.
Wirthensohn, G. & Guder, W. G. (1986). Renal substrate metabolism. Physiological Reviews 66, 469497.
Wright, P. A. & Knepper, M. A. (1990 a). Glutamate dehydrogenase activities in microdissected rat nephron segments: effects of acid-base loading. American Journal of Physiology 259, F53F59.
Wright, P. A. & Knepper, M. A. (1990 b). Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments. American Journal of Physiology 259, F961F970.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed