Skip to main content

Averaging lemmas without time Fourier transform and application to discretized kinetic equations

  • F. Bouchut (a1) and L. Desvillettes (a2)

We prove classical averaging lemmas in the L2 framework with the help of the Fourier transform in variables x and v, but not t. This method is then used to study discretized problems arising out of the numerical analysis of kinetic equations.

Hide All
1Bézard M.. Régularité L p précisée des moyennes dans les équations de transport. Bull. Soc. Math. France 122 (1994), 2976.
2Desvillettes L. and Mischler S.. About the splitting algorithm for Boltzmann and B.G.K. equations. Math. Mod. Meth. Appl. Sci. 6 (1996), 10791101.
3DiPerna R. J. and Lions P.-L.. Global weak solutions of Vlasov–Maxwell systems. Commun. Pure Appl. Math. 42 (1989), 729757.
4DiPerna R. J., Lions P.-L. and Meyer Y.. Lp regularity of velocity averages. Ann. I.H.P., Analyse non-linéaire 8 (1991), 271287.
5Gérard P.. Microlocal defect measures. Commun. Partial Diffl Eqns 16 (1991), 17611794.
6Golse F.. Quelques résultats de moyennisation pour les équations aux dérivées partielles. Rend. Sem. Mat. Univ. Pol. Torino, Fasdcolo Speciale 1988 ‘Hyperbolic Equations’ (1987), 101123.
7Golse F., Lions P.-L., Perthame B. and Sentis R.. Regularity of the moments of the solution of a transport equation. J. Funct. Analysis 76 (1988), 110125.
8Golse F., Perthame B. and Sentis R.. Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport. C. R. Acad. Sci. Série I 301 (1985), 341344.
9Golse F. and Poupaud F.. Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi–Dirac. Asympt. Analysis 6 (1992), 135160.
10Lions P.-L.. Régularité optimale des moyennes en vitesses. C. R. Acad. Sci. Série I 320 (1995), 911915.
11Lions P.-L. and Perthame B.. Lemmes de moments, de moyenne et de dispersion. C. R. Acad. Sci. Série I 314 (1992), 801806.
12Lions P.-L., Perthame B. and Tadmor E.. A kinetic formulation of multidimensional scalar conservation laws and related équations. J. Am. Math. Soc. 7 (1994), 169191.
13Perthame B.. Higher moments for kinetic equations: the Vlasov–Poisson and Fokker–Planck cases. Math. Meth. Appl. Sci. 13 (1990), 441452.
14Perthame B. and Souganidis P. E... A limiting case for velocity averaging. Ann. Scient. Ecole Normale Supérieure 4e série 31 (1998), 591598.
15Vasseur A.. Convergence of a semi-discrete kinetic scheme for the system of isentropic gas dynamics with γ = 3. Indiana Univ. Math. J. (In the press.)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 103 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.