Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T08:18:45.444Z Has data issue: false hasContentIssue false

Existence of renormalized solutions to fully anisotropic and inhomogeneous elliptic problems

Published online by Cambridge University Press:  31 October 2023

Bartosz Budnarowski
Affiliation:
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw ul. Banacha 2, 02-097 Warsaw, Poland (bartek.budnarowski@gmail.com)
Ying Li
Affiliation:
Department of Mathematics, Shanghai University, Shanghai 200444, China (lyinsh@shu.edu.cn)

Abstract

We will present the proof of existence and uniqueness of renormalized solutions to a broad family of strongly non-linear elliptic equations with lower order terms and data of low integrability. The leading part of the operator satisfies general growth conditions settling the problem in the framework of fully anisotropic and inhomogeneous Musielak–Orlicz spaces. The setting considered in this paper generalized known results in the variable exponents, anisotropic polynomial, double phase and classical Orlicz setting.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmida, Y., Chlebicka, I., Gwiazda, P. and Youssfi, A.. Gossez's approximation theorems in Musielak–Orlicz–Sobolev spaces. J. Funct. Anal. 275 (2018), 25382571.CrossRefGoogle Scholar
Alberico, A., Chlebicka, I., Cianchi, A. and Zatorska-Goldstein, A.. Fully anisotropic elliptic problems with minimally integrable data. Calc. Var. Partial Differ. Equ. 58 (2019), 186.CrossRefGoogle Scholar
El Amarty, N., El Haji, B. and Moumni, M. E. L.. Existence of renormalized solution for nonlinear elliptic boundary value problem without $\Delta$2-condition. SeMA J. 77 (2020), 389��414.CrossRefGoogle Scholar
Barletta, G. and Cianchi, A.. Dirichlet problems for fully anisotropic elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), 2560.CrossRefGoogle Scholar
Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M. and Luis Vázquez, J.. An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (1995), 241273.Google Scholar
Blanchard, D. and Murat, F.. Renormalised solutions of nonlinear parabolic problems with $L^1$ data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 11371152.CrossRefGoogle Scholar
Boccardo, L., Giachetti, D., Diaz Dîaz, J. I. and Murat, F.. Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms. J. Differ. Equ. 106 (1993), 215237.CrossRefGoogle Scholar
Bogachev, V. I. and Soares Ruas, M. A.. Measure theory. Vol. 1 (Berlin: Springer-Verlag, 2007).CrossRefGoogle Scholar
Borowski, M. and Chlebicka, I.. Modular density of smooth functions in inhomogeneous and fully anisotropic Musielak–Orlicz–Sobolev spaces. J. Funct. Anal. 283 (2022), 109716.CrossRefGoogle Scholar
Borowski, M., Chlebicka, I. and Miasojedow, B.. Absence of Lavrentiev's gap for anisotropic functionals. arXiv:2210.15217, 2022.Google Scholar
Brézis, H.. Functional analysis Sobolev spaces and partial differential equations. Vol. 2 (New York: Springer, 2011).CrossRefGoogle Scholar
Chlebicka, I.. A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces. Nonlinear Anal. 175 (2018), 127.CrossRefGoogle Scholar
Chlebicka, I.. Measure data elliptic problems with generalized Orlicz growth. Proc. Roy. Soc. Edinburgh Sect. A 153 (2023), 588618.CrossRefGoogle Scholar
Chlebicka, I., Giannetti, F. and Zatorska-Goldstein, A.. A note on uniqueness for $L^1$-data elliptic problems with Orlicz growth. Colloq. Math. 168 (2022), 199209.CrossRefGoogle Scholar
Chlebicka, I., Gwiazda, P., Świerczewska-Gwiazda, A. and Wróblewska-Kamińska, A.. Partial differential equations in anisotropic Musielak-Orlicz spaces (Cham: Springer, 2021).CrossRefGoogle Scholar
Chlebicka, I., Gwiazda, P. and Zatorska-Goldstein, A.. Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak–Orlicz spaces in the class of renormalized solutions. J. Differ. Equ. 265 (2018), 57165766.CrossRefGoogle Scholar
Chlebicka, I., Gwiazda, P. and Zatorska-Goldstein, A.. Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon. Ann. Inst. H. Poincaré C, Anal. Non Linéaire 36 (2019), 14311465.CrossRefGoogle Scholar
Chlebicka, I., Karppinen, A. and Li, Y.. A direct proof of existence of weak solutions to fully anisotropic and inhomogeneous elliptic problems. Topol. Methods Nonlinear Anal.Google Scholar
Chlebicka, I. and Nayar, P.. Essentially fully anisotropic Orlicz functions and uniqueness to measure data problem. Math. Methods Appl. Sci. 45 (2022), 85038527.CrossRefGoogle Scholar
Cianchi, A.. A fully anisotropic sobolev inequality. Pacific J. Math. 196 (2000), 283295.CrossRefGoogle Scholar
Cianchi, A.. Symmetrization in anisotropic elliptic problems. Comm. Partial Differ. Equ. 32 (2007), 693717.CrossRefGoogle Scholar
Colombo, M. and Mingione, G.. Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015), 443496.CrossRefGoogle Scholar
Cruz-Uribe, D. and Fiorenza, A.. Variable Lebesgue spaces: foundations and harmonic analysis (Heidelberg: Springer Science & Business Media, 2013).CrossRefGoogle Scholar
Denkowska, A., Gwiazda, P. and Kalita, P.. On renormalized solutions to elliptic inclusions with nonstandard growth. Calc. Var. Partial Differ. Equ. 60 (2021), 21.CrossRefGoogle Scholar
Di Castro, A.. Anisotropic elliptic problems with natural growth terms. Manuscripta Math. 135 (2011), 521543.CrossRefGoogle Scholar
Di Nardo, R., Feo, F. and Guibé, O.. Uniqueness of renormalized solutions to nonlinear parabolic problems with lower-order terms. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 11851208.CrossRefGoogle Scholar
Diening, L., Harjulehto, P., Hästö, P. and Ruzicka, M.. Lebesgue and Sobolev spaces with variable exponents (Heidelberg: Springer, 2011).CrossRefGoogle Scholar
DiPerna, R. J. and Lions, P.-L.. On the cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. (2) 130 (1989), 321366.CrossRefGoogle Scholar
Donaldson, T.. Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J. Differ. Equ. 10 (1971), 507528.CrossRefGoogle Scholar
Dong, G. and Fang, X.. Differential equations of divergence form in separable Musielak-Orlicz-Sobolev spaces. Bound. Value Probl. 2016 (2016), 119.CrossRefGoogle Scholar
Esposito, L., Leonetti, F. and Mingione, G.. Sharp regularity for functionals with $(p,\, q)$ growth. J. Differ. Equ. 204 (2004), 555.CrossRefGoogle Scholar
Fan, X.. Differential equations of divergence form in Musielak–Sobolev spaces and a sub-supersolution method. J. Math. Anal. Appl. 386 (2012), 593604.CrossRefGoogle Scholar
Gossez, J.-P.. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Amer. Math. Soc. 190 (1974), 163205.CrossRefGoogle Scholar
Gossez, J.-P.. Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems. Nonlinear Anal. Funct. Spaces Appl. (1979), 5994.Google Scholar
Gwiazda, P., Skrzypczak, I. and Zatorska-Goldstein, A.. Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space. J. Differ. Equ. 264 (2018), 341377.CrossRefGoogle Scholar
Gwiazda, P., Wittbold, P., Wróblewska, A. and Zimmermann, A.. Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces. J. Differ. Equ. 253 (2012), 635666.CrossRefGoogle Scholar
Gwiazda, P., Wittbold, P, Wróblewska-Kamińska, A and Zimmermann, A. Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces. Nonlinear Anal. 129 (2015), 136.CrossRefGoogle Scholar
Harjulehto, P. and Hästö, P.. Generalized Orlicz spaces. In Orlicz Spaces and Generalized Orlicz Spaces (Cham: Springer, 2019), pp. 4778.CrossRefGoogle Scholar
Hästö, P.. A fundamental condition for harmonic analysis in anisotropic generalized Orlicz spaces. J. Geom. Anal. 33 (2023), 7.CrossRefGoogle Scholar
Klimov, V. S.. Imbedding theorems and geometric inequalities. Izv. Ross. Akad. Nauk Ser. Mat. 40 (1976), 645671.Google Scholar
Li, Y., Yao, F. and Zhou, S.. Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak–Orlicz spaces. Nonlinear Anal. Real World Appl. 61 (2021), 103330.CrossRefGoogle Scholar
Liu, D. and Zhao, P.. Solutions for a quasilinear elliptic equation in Musielak–Sobolev spaces. Nonlinear Anal. Real World Appl. 26 (2015), 315329.CrossRefGoogle Scholar
Marcellini, P.. Regularity and existence of solutions of elliptic equations with $p,\, q$-growth conditions. J. Differ. Equ. 90 (1991), 130.CrossRefGoogle Scholar
Mingione, G. and Rădulescu, V.. Recent developments in problems with nonstandard growth and nonuniform ellipticity. J. Math. Anal. Appl. 501 (2021), 125197.CrossRefGoogle Scholar
Müller, S.. Variational models for microstructure and phase transitions. Calculus of variations and geometric evolution problems (1996), 85210.Google Scholar
Musielak, J., Orlicz spaces and modular spaces. Lecture Notes in Mathematics, Vol. 1034 (Berlin: Springer-Verlag, 1983).CrossRefGoogle Scholar
Hadj Nassar, S, Moussa, H and Rhoudaf, M. Renormalized solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces. Appl. Math. Comput. 249 (2014), 253264.CrossRefGoogle Scholar
Pedregal, P.. Parametrized measures and variational principles (Basel: Birkhäuser Verlag, 1997).CrossRefGoogle Scholar
Redwane, H.. Existence results for a class of nonlinear parabolic equations in Orlicz spaces. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), 119.CrossRefGoogle Scholar
Skaff, M.. Vector valued Orlicz spaces generalized N-functions. ii. Pacific J. Math. 28 (1969), 413430.CrossRefGoogle Scholar
Skaff, M.. Vector valued Orlicz spaces generalized N-functions. i. Pacific J. Math. 28 (1969), 193206.CrossRefGoogle Scholar
Sohr, H.. The Navier–Stokes equations: an elementary functional analytic approach (Basel: Springer Science & Business Media, 2012).Google Scholar
Wittbold, P. and Zimmermann, A.. Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and $L^1$-data. Nonlinear Anal. 72 (2010), 29903008.CrossRefGoogle Scholar
Zhang, C. and Zhang, X.. Renormalized solutions for the fractional $p(x)$-Laplacian equation with $L^1$ data. Nonlinear Anal. 190 (2020), 111610.CrossRefGoogle Scholar
Zhang, C. and Zhou, S.. Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$ data. J. Differ. Equ. 248 (2010), 13761400.CrossRefGoogle Scholar
Zhang, C. and Zhou, S.. The well-posedness of renormalized solutions for a non-uniformly parabolic equation. Proc. Amer. Math. Soc. 145 (2017), 25772589.CrossRefGoogle Scholar