Skip to main content Accesibility Help
×
×
Home

On the Allen—Cahn/Cahn—Hilliard system with a geometrically linear elastic energy

  • Thomas Blesgen (a1) and Anja Schlömerkemper (a2)
Abstract

We present an extension of the Allen-Cahn/Cahn-Hilliard system that incorporates a geometrically linear ansatz for the elastic energy of the precipitates. The model contains both the elastic Allen-Cahn system and the elastic Cahn-Hilliard system as special cases, and accounts for the microstructures on the microscopic scale. We prove the existence of weak solutions to the new model for a general class of energy functionals. We then give several examples of functionals that belong to this class. This includes the energy of geometrically linear elastic materials for dimensions D < 3. Moreover, we show this for D = 3 in the setting of scalar-valued deformations, which corresponds to the case of anti-plane shear. All this is based on explicit formulae for relaxed energy functionals newly derived in this article for D = 1 and D = 3. In these cases we can also prove the uniqueness of the weak solutions.

Copyright
Corresponding author
*Present address: Bingen University, Berlinstraße 109, 55411 Bingen, Germany, (t.blesgen@fh-bingen.de)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed