Skip to main content
×
Home
    • Aa
    • Aa

The perturbed test function method for viscosity solutions of nonlinear PDE

  • Lawrence C. Evans (a1)
Synopsis
Synopsis

The method of viscosity solutions for nonlinear partial differential equations (PDEs) justifies passages to limits by in effect using the maximum principle to convert to the corresponding limit problem for smooth test functions. We describe in this paper a “perturbed test function” device, which entails various modifications of the test functions by lower order correctors. Applications include homogenisation for quasilinear elliptic PDEs and approximation of quasilinear parabolic PDEs by systems of Hamilton-Jacobi equations.

Copyright
References
Hide All
1Attouch H.. Variational Convergence for Functions and Operators (New York: Pitman, 1984).
2Barles G. and Perthame B.. Exit time problems in optimal control and the vanishing viscosity method. SIAM J. Control Optim. 26 (1988), 11331148.
3Bensoussan A.. Methodes de Perturbations en Contrôle Optimal (to appear).
4Bensoussan A., Boccardo L. and Murat F.. Homogenization of elliptic equations with principal part not in divergence form and Hamiltonian with quadratic growth. Comm. Pure Appl. Math. 39 (1986), 769805.
5Bensoussan A., Lions J. L. and Papanicolaou G.. Asymptotic Analysis for Periodic Structures (Amsterdam: North Holland, 1978).
6Boccardo L. and Murat F.. Homogenisation de problemes quasi-linearies. In Studio di Problemi-Limite delta Analisi Funzionale, 1351 (Bologna: Pitagora Editrice, 1982).
7Crandall M. G. and Lions P. L.. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983), 142.
8Crandall M. G. and Sougandis P. E.. Developments in the theory of nonlinear first order partial differential equations. In Proc. International Sym. on Diff. Eq. (Amsterdam: North Holland, 1984).
9Evans L. C.. A convergence theorem for solutions of nonlinear second order elliptic equations. Indiana Univ. Math. J. 27 (1978), 875887.
10Evans L. C.. Nonlinear semigroup theory and viscosity solutions of Hamilton-Jacobi PDE. In Nonlinear Semigroups, Partial Differential Equations and Attractors, eds. Gill T. L. and Zachary W. W., Lecture Notes in Mathematics 1248 (Berlin: Springer, 1987).
11Evans L. C. and Lions P. L., (to appear).
12Fusco N. and Moscariello. On homogenization of quasilinear divergence structure operators. Ann. Mat. Pura Appl. 146 (1987), 113.
13Gantmacher F. R.. The Theory of Matrices Vol. II (New York: Chelsea, 1960).
14Gilbarg D. and Trudinger N. S.. Elliptic Partial Differential Equations of Second Order, 2nd edn (Berlin: Springer, 1983).
15Ishii H.. A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations (to appear).
16Ishii H.. On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDE's (to appear).
17Jensen R.. The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Rational Mech. Anal. 101 (1988), 127.
18Kushner H.. Approximation and Weak Convergence Methods for Random Processes. (Cambridge: MIT Press, 1984).
19Lions P. L.. Generalized Solutions of Hamilton-Jacobi Equations (Boston: Pitman, 1982).
20Lions P. L., Papanicolaou G. and Varadhan S. R. S.. Homogenization of Hamilton-Jacobi equations (preprint).
21Papanicolaou G. and Varadhan S. R. S.. A limit theorem with strong mixing in Banach space and two applications to stochastic differential equations. Comm. Pure Appl. Math. 26 (1973), 497524.
22Pinsky M.. Differential equations with a small parameter and the central limit theorem for functions denned on a finite Markov chain. Z. Wahrsch. Verw. Gebiete 9 (1968), 101111.
23Tartar L.. Cours Peccot, Collège de France, February, 1977.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 48 *
Loading metrics...

Abstract views

Total abstract views: 306 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.