Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s5ss2 Total loading time: 0.272 Render date: 2021-03-07T12:29:25.308Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Childhood trauma- and cannabis-associated microstructural white matter changes in patients with psychotic disorder: a longitudinal family-based diffusion imaging study

Published online by Cambridge University Press:  29 May 2018

Patrick Domen
Affiliation:
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
Stijn Michielse
Affiliation:
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
Sanne Peeters
Affiliation:
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands Faculty of Psychology and Educational Sciences, Open University of the Netherlands, Heerlen, The Netherlands
Wolfgang Viechtbauer
Affiliation:
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
Jim van Os
Affiliation:
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands Department of Psychosis Studies, Institute of Psychiatry, King's College London, King's Health Partners, London, UK Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
Machteld Marcelis
Affiliation:
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
for Genetic Risk and Outcome of Psychosis (G.R.O.U.P.)
Affiliation:
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands Faculty of Psychology and Educational Sciences, Open University of the Netherlands, Heerlen, The Netherlands Department of Psychosis Studies, Institute of Psychiatry, King's College London, King's Health Partners, London, UK Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
Corresponding

Abstract

Background

Decreased white matter (WM) integrity in patients with psychotic disorder has been a consistent finding in diffusion tensor imaging (DTI) studies. However, the contribution of environmental risk factors to these WM alterations is rarely investigated. The current study examines whether individuals with (increased risk for) psychotic disorder will show increased WM integrity change over time with increasing levels of childhood trauma and cannabis exposure.

Methods

DTI scans were obtained from 85 patients with a psychotic disorder, 93 non-psychotic siblings and 80 healthy controls, of which 60% were rescanned 3 years later. In a whole-brain voxel-based analysis, associations between change in fractional anisotropy (ΔFA) and environmental exposures as well as interactions between group and environmental exposure in the model of FA and ΔFA were investigated. Analyses were adjusted for a priori hypothesized confounding variables: age, sex, and level of education.

Results

At baseline, no significant associations were found between FA and both environmental risk factors. At follow-up as well as over a 3-year interval, significant interactions between group and, respectively, cannabis exposure and childhood trauma exposure in the model of FA and ΔFA were found. Patients showed more FA decrease over time compared with both controls and siblings when exposed to higher levels of cannabis or childhood trauma.

Conclusions

Higher levels of cannabis or childhood trauma may compromise connectivity over the course of the illness in patients, but not in individuals at low or higher than average genetic risk for psychotic disorder, suggesting interactions between the environment and illness-related factors.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Andreasen, NC, Paradiso, S and O'Leary, DS (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia; a dysfunction in cortical – subcortical – cerebellar circuitry. Schizophrenia Bulletin 24, 203218.CrossRefGoogle ScholarPubMed
Annett, M (1970) A classification of hand preference by association analysis. British Journal of Psychology 61, 303321.CrossRefGoogle ScholarPubMed
Arnone, D, Barrick, TR, Chengappa, S, Mackay, CE, Clark, CA and Abou-Saleh, MT (2008) Corpus callosum damage in heavy marijuana use: preliminary evidence from diffusion tensor tractography and tract-based spatial statistics. NeuroImage 41, 10671074.CrossRefGoogle ScholarPubMed
Baker, ST, Yucel, M, Fornito, A, Allen, NB and Lubman, DI (2013) A systematic review of diffusion weighted MRI studies of white matter microstructure in adolescent substance users. Neuroscience & Biobehavioral Reviews 37, 17131723.CrossRefGoogle ScholarPubMed
Bava, S, Jacobus, J, Thayer, RE and Tapert, SF (2013) Longitudinal changes in white matter integrity among adolescent substance users. Alcoholism, Clinical & Experimental Research 37(suppl. 1), E181E189.CrossRefGoogle ScholarPubMed
Becker, MP, Collins, PF, Lim, KO, Muetzel, RL and Luciana, M (2015) Longitudinal changes in white matter microstructure after heavy cannabis use. Developmental Cognitive Neuroscience 16, 2335.CrossRefGoogle ScholarPubMed
Bendall, S, Jackson, HJ, Hulbert, CA and McGorry, PD (2008) Childhood trauma and psychotic disorders: a systematic, critical review of the evidence. Schizophrenia Bulletin 34, 568579.CrossRefGoogle Scholar
Bernstein, DP, Ahluvalia, T, Pogge, D and Handelsman, L (1997) Validity of the childhood trauma questionnaire in an adolescent psychiatric population. Journal of the American Academy of Child and Adolescent Psychiatry 36, 340348.CrossRefGoogle Scholar
Boos, HB, Mandl, RC, van Haren, NE, Cahn, W, van Baal, GC, Kahn, RS and Hulshoff Pol, HE (2013) Tract-based diffusion tensor imaging in patients with schizophrenia and their non-psychotic siblings. European Neuropsychopharmacology 23, 295304.CrossRefGoogle ScholarPubMed
Cahn, W, Hulshoff Pol, HE, Caspers, E, van Haren, NE, Schnack, HG and Kahn, RS (2004) Cannabis and brain morphology in recent-onset schizophrenia. Schizophrenia Research 67, 305307.CrossRefGoogle ScholarPubMed
Canu, E, Agosta, F and Filippi, M (2015) A selective review of structural connectivity abnormalities of schizophrenic patients at different stages of the disease. Schizophrenia Research 161, 1928.CrossRefGoogle ScholarPubMed
Choi, J, Jeong, B, Polcari, A, Rohan, ML and Teicher, MH (2012) Reduced fractional anisotropy in the visual limbic pathway of young adults witnessing domestic violence in childhood. NeuroImage 59, 10711079.CrossRefGoogle ScholarPubMed
Cookey, J, Bernier, D and Tibbo, PG (2014) White matter changes in early phase schizophrenia and cannabis use: an update and systematic review of diffusion tensor imaging studies. Schizophrenia Research 156, 137142.CrossRefGoogle ScholarPubMed
Cornblatt, BA, Lencz, T, Smith, CW, Correll, CU, Auther, AM and Nakayama, E (2003) The schizophrenia prodrome revisited: a neurodevelopmental perspective. Schizophrenia Bulletin 29, 633651.CrossRefGoogle ScholarPubMed
Daniels, JK, Lamke, JP, Gaebler, M, Walter, H and Scheel, M (2013) White matter integrity and its relationship to PTSD and childhood trauma – a systematic review and meta-analysis. Depression and Anxiety 30, 207216.CrossRefGoogle ScholarPubMed
Dekker, N, Schmitz, N, Peters, BD, van Amelsvoort, TA, Linszen, DH and de Haan, L (2010) Cannabis use and callosal white matter structure and integrity in recent-onset schizophrenia. Psychiatry Research 181, 5156.CrossRefGoogle ScholarPubMed
Domen, P, Peeters, S, Michielse, S, Gronenschild, E, Viechtbauer, W, Roebroeck, A, van Os, J and Marcelis, M (2017) Differential time course of microstructural white matter in patients with psychotic disorder and individuals at risk: a 3-year follow-up study. Schizophrenia Bulletin 43, 160170.CrossRefGoogle ScholarPubMed
Domen, PA, Michielse, S, Gronenschild, E, Habets, P, Roebroeck, A, Schruers, K, van Os, J and Marcelis, M (2013) Microstructural white matter alterations in psychotic disorder: a family-based diffusion tensor imaging study. Schizophrenia Research 146, 291300.CrossRefGoogle ScholarPubMed
Ellison-Wright, I and Bullmore, E (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research 108, 310.CrossRefGoogle Scholar
Epstein, KA and Kumra, S (2015) White matter fractional anisotropy over two time points in early onset schizophrenia and adolescent cannabis use disorder: a naturalistic diffusion tensor imaging study. Psychiatry Research 232, 3441.CrossRefGoogle ScholarPubMed
Friston, KJ (1998) The disconnection hypothesis. Schizophrenia Research 30, 115125.CrossRefGoogle ScholarPubMed
Heim, C and Binder, EB (2012) Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Experimental Neurology 233, 102111.CrossRefGoogle ScholarPubMed
Jackowski, AP, Douglas-Palumberi, H, Jackowski, M, Win, L, Schultz, RT, Staib, LW, Krystal, JH and Kaufman, J (2008) Corpus callosum in maltreated children with posttraumatic stress disorder: a diffusion tensor imaging study. Psychiatry Research 162, 256261.CrossRefGoogle ScholarPubMed
Jakabek, D, Yucel, M, Lorenzetti, V and Solowij, N (2016) An MRI study of white matter tract integrity in regular cannabis users: effects of cannabis use and age. Psychopharmacology (Berlin) 233, 36273637.CrossRefGoogle Scholar
James, A, Hough, M, James, S, Winmill, L, Burge, L, Nijhawan, S, Matthews, PM and Zarei, M (2011) Greater white and grey matter changes associated with early cannabis use in adolescent-onset schizophrenia (AOS). Schizophrenia Research 128, 9197.CrossRefGoogle Scholar
Jones, DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magnetic Resonance in Medicine 51, 807815.CrossRefGoogle ScholarPubMed
Kanaan, RA, Chaddock, C, Allin, M, Picchioni, MM, Daly, E, Shergill, SS and McGuire, PK (2014) Gender influence on white matter microstructure: a tract-based spatial statistics analysis. PLoS ONE 9, e91109.CrossRefGoogle ScholarPubMed
Kay, SR, Fiszbein, A and Opler, LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261276.CrossRefGoogle Scholar
Korver, N, Quee, PJ, Boos, HB, Simons, CJ and de Haan, L (2012) Genetic risk and outcome of psychosis (GROUP), a multi-site longitudinal cohort study focused on gene-environment interaction: objectives, sample characteristics, recruitment and assessment methods. International Journal of Methods in Psychiatric Research 21, 205221.CrossRefGoogle ScholarPubMed
Kubicki, M, McCarley, R, Westin, CF, Park, HJ, Maier, S, Kikinis, R, Jolesz, FA and Shenton, ME (2007) A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research 41, 1530.CrossRefGoogle Scholar
Lubman, DI, Cheetham, A and Yucel, M (2015) Cannabis and adolescent brain development. Pharmacology and Therapeutics 148, 116.CrossRefGoogle ScholarPubMed
Maynard, TM, Sikich, L, Lieberman, JA and LaMantia, AS (2001) Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophrenia Bulletin 27, 457476.CrossRefGoogle ScholarPubMed
Menzler, K, Belke, M, Wehrmann, E, Krakow, K, Lengler, U, Jansen, A, Hamer, HM, Oertel, WH, Rosenow, F and Knake, S (2011) Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. NeuroImage 54, 25572562.CrossRefGoogle ScholarPubMed
Misiak, B, Krefft, M, Bielawski, T, Moustafa, AA, Sąsiadek, MM and Frydecka, D (2017) Toward a unified theory of childhood trauma and psychosis: a comprehensive review of epidemiological, clinical, neuropsychological and biological findings. Neuroscience & Biobehavioral Reviews 75, 393406.CrossRefGoogle Scholar
Molina-Holgado, E, Vela, JM, Arevalo-Martin, A, Almazan, G, Molina-Holgado, F, Borrell, J and Guaza, C (2002) Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. The Journal of Neuroscience 22, 97429753.CrossRefGoogle ScholarPubMed
Nesvåg, R, Frigessi, A, Jönsson, EG and Agartz, I (2007) Effects of alcohol consumption and antipsychotic medication on brain morphology in schizophrenia. Schizophrenia Research 90, 5261.CrossRefGoogle Scholar
O'Donnell, LJ and Pasternak, O (2015) Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophrenia Research 161, 133141.CrossRefGoogle ScholarPubMed
Ozcelik-Eroglu, E, Ertugrul, A, Oguz, KK, Has, AC, Karahan, S and Yazici, MK (2014) Effect of clozapine on white matter integrity in patients with schizophrenia: a diffusion tensor imaging study. Psychiatry Research 223, 226235.CrossRefGoogle ScholarPubMed
Pagliaccio, D, Luby, JL, Bogdan, R, Agrawal, A, Gaffrey, MS, Belden, AC, Botteron, KN, Harms, MP and Barch, DM (2014) Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology 39, 12451253.CrossRefGoogle ScholarPubMed
Paul, R, Henry, L, Grieve, SM, Guilmette, TJ, Niaura, R, Bryant, R, Bruce, S, Williams, LM, Richard, CC, Cohen, RA and Gordon, E (2008) The relationship between early life stress and microstructural integrity of the corpus callosum in a non-clinical population. Neuropsychiatric Disease and Treatment 4, 193201.CrossRefGoogle Scholar
Peters, BD, Blaas, J and de Haan, L (2010) Diffusion tensor imaging in the early phase of schizophrenia: what have we learned? Journal of Psychiatric Research 44, 9931004.CrossRefGoogle ScholarPubMed
Peters, BD, de Haan, L, Vlieger, EJ, Majoie, CB, den Heeten, GJ and Linszen, DH (2009) Recent-onset schizophrenia and adolescent cannabis use: MRI evidence for structural hyperconnectivity? Psychopharmacology bulletin 42, 7588.Google ScholarPubMed
Reis Marques, T, Taylor, H, Chaddock, C, Dell'acqua, F, Handley, R, Reinders, AA, Mondelli, V, Bonaccorso, S, Diforti, M, Simmons, A, David, AS, Murray, RM, Pariante, CM, Kapur, S and Dazzan, P (2014) White matter integrity as a predictor of response to treatment in first episode psychosis. Brain 137, 172182.CrossRefGoogle ScholarPubMed
Rubino, T and Parolaro, D (2014) Cannabis abuse in adolescence and the risk of psychosis: a brief review of the preclinical evidence. Progress in Neuropsychopharmacology & Biological Psychiatry 52, 4144.CrossRefGoogle ScholarPubMed
Sarne, Y and Mechoulam, R (2005) Cannabinoids: between neuroprotection and neurotoxicity. Current Drug Targets. CNS and Neurological Disorders 4, 677684.CrossRefGoogle ScholarPubMed
Szeszko, PR, Robinson, DG, Ashtari, M, Vogel, J, Betensky, J, Sevy, S, Ardekani, BA, Lencz, T, Malhotra, AK, McCormack, J, Miller, R, Lim, KO, Gunduz-Bruce, H, Kane, JM and Bilder, RM (2007) Anterior cingulate grey-matter deficits and cannabis use in first-episode schizophrenia. British Journal of Psychiatry 190, 230236.CrossRefGoogle ScholarPubMed
Szeszko, PR, Robinson, DG, Sevy, S, Kumra, S, Rupp, CI, Betensky, JD, Lencz, T, Ashtari, M, Kane, JM, Malhotra, AK, Gunduz-Bruce, H, Napolitano, B and Bilder, RM (2008) Clinical and neuropsychological correlates of white matter abnormalities in recent onset schizophrenia. Neuropsychopharmacology 33, 976984.CrossRefGoogle ScholarPubMed
Team, RC (2015) R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing: Vienna, Austria.Google Scholar
Teicher, MH, Andersen, SL, Polcari, A, Anderson, CM and Navalta, CP (2002) Developmental neurobiology of childhood stress and trauma. Psychiatric Clinics of North America 25, 397426, vii–viii.CrossRefGoogle ScholarPubMed
Teicher, MH, Dumont, NL, Ito, Y, Vaituzis, C, Giedd, JN and Andersen, SL (2004) Childhood neglect is associated with reduced corpus callosum area. Biological Psychiatry 56, 8085.CrossRefGoogle ScholarPubMed
Thombs, BD, Bernstein, DP, Lobbestael, J and Arntz, A (2009) A validation study of the Dutch childhood trauma questionnaire-short form: factor structure, reliability, and known-groups validity. Child Abuse & Neglect 33, 518523.CrossRefGoogle ScholarPubMed
van Os Jand Kapur, S (2009). Schizophrenia. The Lancet 374, 635645.CrossRefGoogle Scholar
Varese, F, Smeets, F, Drukker, M, Lieverse, R, Lataster, T, Viechtbauer, W, Read, J, van Os, J and Bentall, RP (2012) Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophrenia Bulletin 38, 661671.CrossRefGoogle ScholarPubMed
Voineskos, AN (2015) Genetic underpinnings of white matter ‘connectivity’: heritability, risk, and heterogeneity in schizophrenia. Schizophrenia Research 161, 5060.CrossRefGoogle Scholar
von Hausswolff-Juhlin, Y, Bjartveit, M, Lindstrom, E and Jones, P (2009) Schizophrenia and physical health problems. Acta Psychiatrica Scandinavica 119(suppl. 438), 1521.CrossRefGoogle Scholar
Wang, F, Jiang, T, Sun, Z, Teng, SL, Luo, X, Zhu, Z, Zang, Y, Zhang, H, Yue, W, Qu, M, Lu, T, Hong, N, Huang, H, Blumberg, HP and Zhang, D (2009) Neuregulin 1 genetic variation and anterior cingulum integrity in patients with schizophrenia and healthy controls. Journal of Psychiatry & Neuroscience 34, 181186.Google ScholarPubMed
Wang, HH, Zhang, ZJ, Tan, QR, Yin, H, Chen, YC, Wang, HN, Zhang, RG, Wang, ZZ, Guo, L, Tang, LH and Li, LJ (2010) Psychopathological, biological, and neuroimaging characterization of posttraumatic stress disorder in survivors of a severe coalmining disaster in China. Journal of Psychiatric Research 44, 385392.CrossRefGoogle Scholar
Westlye, LT, Walhovd, KB, Dale, AM, Bjornerud, A, Due-Tonnessen, P, Engvig, A, Grydeland, H, Tamnes, CK, Ostby, Y and Fjell, AM (2010) Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex 20, 20552068.CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (1990) Composite International Diagnostic Interview (CIDI): a) CIDI-interview (version 1.0), b) CIDI-user manual, c) CIDI-training manual, d) CIDI-computer programs. Geneva: WHO.Google Scholar
Willi, TS, Barr, AM, Gicas, K, Lang, DJ, Vila-Rodriguez, F, Su, W, Thornton, AE, Leonova, O, Giesbrecht, CJ, Procyshyn, RM, Rauscher, A, MacEwan, WG, Honer, WG and Panenka, WJ (2017) Characterization of white matter integrity deficits in cocaine-dependent individuals with substance-induced psychosis compared with non-psychotic cocaine users. Addiction Biology 22, 873881.CrossRefGoogle ScholarPubMed
Zalesky, A, Solowij, N, Yucel, M, Lubman, DI, Takagi, M, Harding, IH, Lorenzetti, V, Wang, R, Searle, K, Pantelis, C and Seal, M (2012) Effect of long-term cannabis use on axonal fibre connectivity. Brain 135, 22452255.CrossRefGoogle ScholarPubMed
Zhang, L, Zhang, Y, Li, L, Li, Z, Li, W, Ma, N, Hou, C, Zhang, Z, Zhang, Z, Wang, L, Duan, L and Lu, G (2011) Different white matter abnormalities between the first-episode, treatment-naive patients with posttraumatic stress disorder and generalized anxiety disorder without comorbid conditions. Journal of Affective Disorders 133, 294299.CrossRefGoogle ScholarPubMed

Domen et al. supplementary material

Domen et al. supplementary material 1

File 54 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 42
Total number of PDF views: 218 *
View data table for this chart

* Views captured on Cambridge Core between 29th May 2018 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Childhood trauma- and cannabis-associated microstructural white matter changes in patients with psychotic disorder: a longitudinal family-based diffusion imaging study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Childhood trauma- and cannabis-associated microstructural white matter changes in patients with psychotic disorder: a longitudinal family-based diffusion imaging study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Childhood trauma- and cannabis-associated microstructural white matter changes in patients with psychotic disorder: a longitudinal family-based diffusion imaging study
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *