Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-spssh Total loading time: 0.194 Render date: 2021-07-25T05:28:48.727Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Hyper-responsivity to losses in the anterior insula during economic choice scales with depression severity

Published online by Cambridge University Press:  07 June 2017

J. B. Engelmann
Affiliation:
Center for Research in Experimental Economics and Political Decision Making (CREED), Amsterdam School of Economics, University of Amsterdam and The Tinbergen Institute, Amsterdam, The Netherlands Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, EN Nijmegen, The Netherlands
G. S. Berns
Affiliation:
Department of Psychology, Emory University, Atlanta, GA, USA
B. W. Dunlop
Affiliation:
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
Corresponding
E-mail address:

Abstract

Background

Commonly observed distortions in decision-making among patients with major depressive disorder (MDD) may emerge from impaired reward processing and cognitive biases toward negative events. There is substantial theoretical support for the hypothesis that MDD patients overweight potential losses compared with gains, though the neurobiological underpinnings of this bias are uncertain.

Methods

Twenty-one unmedicated patients with MDD were compared with 25 healthy controls (HC) using functional magnetic resonance imaging (fMRI) together with an economic decision-making task over mixed lotteries involving probabilistic gains and losses. Region-of-interest analyses evaluated neural signatures of gain and loss coding within a core network of brain areas known to be involved in valuation (anterior insula, caudate nucleus, ventromedial prefrontal cortex).

Results

Usable fMRI data were available for 19 MDD and 23 HC subjects. Anterior insula signal showed negative coding of losses (gain > loss) in HC subjects consistent with previous findings, whereas MDD subjects demonstrated significant reversals in these associations (loss > gain). Moreover, depression severity further enhanced the positive coding of losses in anterior insula, ventromedial prefrontal cortex, and caudate nucleus. The hyper-responsivity to losses displayed by the anterior insula of MDD patients was paralleled by a reduced influence of gain, but not loss, stake size on choice latencies.

Conclusions

Patients with MDD demonstrate a significant shift from negative to positive coding of losses in the anterior insula, revealing the importance of this structure in value-based decision-making in the context of emotional disturbances.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Armel, KC, Beaumel, A, Rangel, A (2008). Biasing simple choices by manipulating relative visual attention. Judgment and Decision Making 3, 396403.Google Scholar
Armstrong, T, Olatunji, BO (2012). Clinical psychology review. Elsevier Ltd Clinical Psychology Review 32, 704723.CrossRefGoogle Scholar
Bartra, O, McGuire, JT, Kable, JW (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76, 412427.CrossRefGoogle ScholarPubMed
Beck, AT (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Psychiatric Association American Journal of Psychiatry 165, 969977.CrossRefGoogle ScholarPubMed
Callicott, JH, Mattay, VS, Verchinski, BA, Marenco, S, Egan, MF, Weinberger, DR (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. American Psychiatric Publishing American Journal of Psychiatry 160, 22092215.CrossRefGoogle ScholarPubMed
Camerer, C (2005). Three cheers – psychological, theoretical, empirical – for loss aversion. American Marketing Association Journal of Marketing Research 42, 129133.CrossRefGoogle Scholar
Canessa, N, Crespi, C, Motterlini, M, Baud-Bovy, G, Chierchia, G, Pantaleo, G, Tettamanti, M, Cappa, SF (2013). The functional and structural neural basis of individual differences in loss aversion. Society for Neuroscience Journal of Neuroscience 33, 1430714317.CrossRefGoogle ScholarPubMed
Cohn, A, Engelmann, J, Fehr, E, Maréchal, MA (2015). Evidence for countercyclical risk aversion: an experiment with financial professionals. American Economic Review 105, 860885.CrossRefGoogle Scholar
Der-Avakian, A, Markou, A (2012). The neurobiology of anhedonia and other reward-related deficits. Trends in Neurosciences 35, 6877.CrossRefGoogle ScholarPubMed
DiMatteo, MR, Lepper, HS, Croghan, TW (2000). Depression is a risk factor for noncompliance with medical treatment: meta-analysis of the effects of anxiety and depression on patient adherence. Archives of Internal Medicine 160, 21012107.CrossRefGoogle ScholarPubMed
Disner, SG, Beevers, CG, Haigh, EAP, Beck, AT (2011). Neural mechanisms of the cognitive model of depression. Nature Publishing Group Nature Reviews Neuroscience 12, 467477.CrossRefGoogle Scholar
Dunlop, BW (2015). Prediction of treatment outcomes in major depressive disorder. Expert Review of Clinical Pharmacology 8, 669672.CrossRefGoogle ScholarPubMed
Dunlop, BW, Kelley, ME, McGrath, CL (2015). Preliminary findings supporting insula metabolic activity as a predictor of outcome to psychotherapy and medication treatments for depression. Journal of Neuropsychiatry and Clinical Neurosciences 27, 237239.CrossRefGoogle Scholar
Dunlop, BW, Rajendra, JK, Craighead, WE, Kelley, ME, McGrath, CL, Choi, KS, Kinkead, B, Nemeroff, CB, Mayberg, HS (2017). Functional connectivity of the subcallosal cingulate cortex identifies differential outcomes to treatment with cognitive behavior therapy or antidepressant medication for major depressive disorder. American Journal of Psychiatry. doi: 10.1176/appi.ajp.2016.16050518.CrossRefGoogle ScholarPubMed
Engelmann, JB, Maciuba, B, Vaughan, C, Paulus, MP, Dunlop, BW (2013). Posttraumatic stress disorder increases sensitivity to long term losses among patients with major depressive disorder. Ed. A Bruce PLoS ONE 8, e78292.CrossRefGoogle Scholar
Engelmann, JB, Meyer, F, Fehr, E, Ruff, CC (2015). Anticipatory anxiety disrupts neural valuation during risky choice. Society for Neuroscience Journal of Neuroscience 35, 30853099.CrossRefGoogle ScholarPubMed
First, MB (1995). Structured Clinical Interview for the DSM (SCID), pp. 16. John Wiley & Sons, Inc.: Hoboken, NJ, USA.Google Scholar
Gradin, VB, Kumar, P, Waiter, G, Ahearn, T, Stickle, C, Milders, M, Reid, I, Hall, J, Steele, JD (2011). Expected value and prediction error abnormalities in depression and schizophrenia. Oxford University Press Brain 134, awr059aw1764.CrossRefGoogle Scholar
Gradin, VB, Pérez, A, MacFarlane, JA, Cavin, I, Waiter, G, Engelmann, J, Dritschel, B, Pomi, A, Matthews, K, Steele, JD (2015). Abnormal brain responses to social fairness in depression: an fMRI study using the Ultimatum Game. Psychological Medicine 45, 12411251.CrossRefGoogle ScholarPubMed
Grinband, J, Wager, TD, Lindquist, M, Ferrera, VP, Hirsch, J (2008). Detection of time-varying signals in event-related fMRI designs. NeuroImage 43, 509520.CrossRefGoogle ScholarPubMed
Hamilton, M (1959). The assessment of anxiety states by rating. British Journal of Medical Psychology 32, 5055.CrossRefGoogle ScholarPubMed
Hamilton, M (1967). Development of a rating scale for primary depressive illness. Blackwell Publishing Ltd British Journal of Social and Clinical Psychology 6, 278296.CrossRefGoogle ScholarPubMed
Harlé, KM, Allen, JJB, Sanfey, AG (2010). The impact of depression on social economic decision making. Journal of Abnormal Psychology 119, 440446.CrossRefGoogle ScholarPubMed
Harlé, KM, Chang, LJ, van't Wout, M, Sanfey, AG (2012). The neural mechanisms of affect infusion in social economic decision-making: a mediating role of the anterior insula. NeuroImage 61, 3240.CrossRefGoogle ScholarPubMed
Henson, RNA, Price, CJ, Rugg, MD, Turner, R, Friston, KJ (2002). Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. NeuroImage 15, 8397.CrossRefGoogle ScholarPubMed
Huys, QJ, Pizzagalli, DA, Bogdan, R, Dayan, P (2013). Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. BioMed Central Ltd Biology of Mood & Anxiety Disorders 3, 12.CrossRefGoogle ScholarPubMed
Kahneman, D, Knetsch, JL, Thaler, RH (1990). Experimental tests of the endowment effect and the Coase theorem. The University of Chicago Press Journal of Political Economy 98, 13251348.CrossRefGoogle Scholar
Knutson, B, Greer, SM (2008). Anticipatory affect: neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 37713786.CrossRefGoogle ScholarPubMed
Knutson, B, Wimmer, GE, Kuhnen, CM, Winkielman, P (2008). Nucleus accumbens activation mediates the influence of reward cues on financial risk taking. NeuroReport 19, 509513.CrossRefGoogle ScholarPubMed
Krajbich, I, Armel, C, Rangel, A (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Publishing Group Nature Neuroscience 13, 12921298.CrossRefGoogle ScholarPubMed
Krajbich, I, Bartling, B, Hare, T, Fehr, E (2015). Rethinking fast and slow based on a critique of reaction-time reverse inference. Nature Communications 6, 7455.CrossRefGoogle ScholarPubMed
Krajbich, I, Lu, D, Camerer, C, Rangel, A (2012). The attentional drift-diffusion model extends to simple purchasing decisions. Frontiers in Psychology 3, 193.CrossRefGoogle ScholarPubMed
Leahy, RL (2001). Depressive decision making: validation of the portfolio theory model. Journal of Cognitive Psychotherapy 15, 341362.Google Scholar
Levy, DJ, Glimcher, PW (2012). The root of all value: a neural common currency for choice. Elsevier Ltd Current Opinion in Neurobiology 22, 10271038.CrossRefGoogle ScholarPubMed
Lim, S-L, O'Doherty, JP, Rangel, A (2011). The decision value computations in the vmPFC and striatum use a relative value code that is guided by visual attention. Society for Neuroscience Journal of Neuroscience 31, 1321413223.CrossRefGoogle ScholarPubMed
McClure, EB, Monk, CS, Nelson, EE, Parrish, JM, Adler, A, Blair, RJR, Fromm, SJ, Charney, DS, Leibenluft, E, Ernst, M, Pine, DS (2007). Abnormal attention modulation of fear circuit function in pediatric generalized anxiety disorder. Archives of General Psychiatry 64, 97106.CrossRefGoogle ScholarPubMed
McClure, SM, York, MK, Montague, PR (2004). The neural substrates of reward processing in humans: the modern role of fMRI. SAGE Publications Neuroscientist 10, 260268.CrossRefGoogle ScholarPubMed
McGrath, CL, Kelley, ME, Holtzheimer, PE, Dunlop, BW, Craighead, WE, Franco, AR, Craddock, RC, Mayberg, HS (2013). Toward a neuroimaging treatment selection biomarker for major depressive disorder. American Medical Association JAMA Psychiatry 70, 821829.CrossRefGoogle Scholar
Pammi, CVS, Pillai Geethabhavan Rajesh, P, Kesavadas, C, Rappai Mary, P, Seema, S, Radhakrishnan, A, Sitaram, R (2015). Neural loss aversion differences between depression patients and healthy individuals: a functional MRI investigation. SAGE Publications Neuroradiology Journal 28, 97105.CrossRefGoogle Scholar
Paulus, MP, Rogalsky, C, Simmons, A, Feinstein, JS, Stein, MB (2003). Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. NeuroImage 19, 14391448.CrossRefGoogle ScholarPubMed
Paulus, MP, Stein, MB (2006). An insular view of anxiety. BPS 60, 383387.Google ScholarPubMed
Paulus, MP, Yu, AJ (2012). Emotion and decision-making: affect-driven belief systems in anxiety and depression. Trends in Cognitive Sciences 16, 476483.CrossRefGoogle ScholarPubMed
Peckham, AD, McHugh, RK, Otto, MW (2010). A meta-analysis of the magnitude of biased attention in depression. Wiley Subscription Services, Inc., A Wiley Company Depression and Anxiety 27, 11351142.CrossRefGoogle ScholarPubMed
Pessiglione, M, Seymour, B, Flandin, G, Dolan, RJ, Frith, CD (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 10421045.CrossRefGoogle ScholarPubMed
Pizzagalli, D, Holmes, A, Dillon, D, Goetz, E, Birk, J, Bogdan, R, Dougherty, D, Iosifescu, D, Rauch, S, Fava, M (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Psychiatric Association American Journal of Psychiatry 166, 702710.CrossRefGoogle ScholarPubMed
Price, JL, Drevets, WC (2010). Neurocircuitry of mood disorders. Nature Publishing Group Neuropsychopharmacology 35, 192216.CrossRefGoogle ScholarPubMed
Rangel, A, Camerer, C, Montague, PR (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience 9, 545556.CrossRefGoogle ScholarPubMed
Richard-Devantoy, S, Olié, E, Guillaume, S, Courtet, P (2016). Decision-making in unipolar or bipolar suicide attempters. Journal of Affective Disorders 190, 128136.CrossRefGoogle ScholarPubMed
Seymour, B, Daw, N, Dayan, P, Singer, T, Dolan, R (2007). Differential encoding of losses and gains in the human striatum. Society for Neuroscience Journal of Neuroscience 27, 48264831.CrossRefGoogle ScholarPubMed
Sharp, C, Monterosso, J, Montague, PR (2012). Neuroeconomics: a bridge for translational research. Biological Psychiatry 72, 8792.CrossRefGoogle ScholarPubMed
Sliz, D, Hayley, S (2012). Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research. Frontiers Media SA Frontiers in Human Neuroscience 6, 323.CrossRefGoogle ScholarPubMed
Sokol-Hessner, P, Camerer, CF, Phelps, EA (2013). Emotion regulation reduces loss aversion and decreases amygdala responses to losses. Oxford University Press Social Cognitive and Affective Neuroscience 8, 341350.CrossRefGoogle ScholarPubMed
Thaler, RH, Johnson, EJ (1990). Gambling with the house money and trying to break even: the effects of prior outcomes on risky choice. INFORMS Management Science 36, 643660.CrossRefGoogle Scholar
Thompson, MG, Heller, K (1993). Distinction between quality and quantity of problem-solving responses among depressed older women. Psychology and Aging 8, 347359.CrossRefGoogle Scholar
Tom, SM, Fox, CR, Trepel, C, Poldrack, RA (2007). The neural basis of loss aversion in decision-making under risk. Science 315, 515518.CrossRefGoogle ScholarPubMed
Treadway, MT, Zald, DH (2011). Reconsidering anhedonia in depression: lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews 35, 537555.CrossRefGoogle ScholarPubMed
Trivedi, MH, Greer, TL (2014). Cognitive dysfunction in unipolar depression: implications for treatment. Journal of Affective Disorders 152–154, 1927.CrossRefGoogle ScholarPubMed
Ubl, B, Kuehner, C, Kirsch, P, Ruttorf, M, Diener, C, Flor, H (2015). Altered neural reward and loss processing and prediction error signalling in depression. Oxford University Press Social Cognitive and Affective Neuroscience 10, nsu158ns1112.CrossRefGoogle ScholarPubMed
Wager, TD, Keller, MC, Lacey, SC, Jonides, J (2005). Increased sensitivity in neuroimaging analyses using robust regression. NeuroImage 26, 99113.CrossRefGoogle ScholarPubMed
Weber, B, Aholt, A, Neuhaus, C, Trautner, P, Elger, CE, Teichert, T (2007). Neural evidence for reference-dependence in real-market-transactions. NeuroImage 35, 441447.CrossRefGoogle ScholarPubMed
Wechsler, D (1999). Wechsler Abbreviated Scale of Intelligence (WASI). Journal of Psychoeducational Assessment, vol 31, pp. 337341. Psychological Corporation: San Antonio, TX.Google Scholar
Whooley, MA, Kiefe, CI, Chesney, MA, Markovitz, JH, Matthews, K, Hulley, SB (2002). Depressive symptoms, unemployment, and loss of income: the CARDIA study. American Medical Association Archives of Internal Medicine 162, 26142620.CrossRefGoogle ScholarPubMed
Wilkinson, D, Halligan, P (2004). The relevance of behavioural measures for functional-imaging studies of cognition. Nature Reviews Neuroscience 5, 6773.CrossRefGoogle ScholarPubMed
Yarkoni, T, Barch, DM, Gray, JR, Conturo, TE, Braver, TS (2009). BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. Ed. B Baune. Public Library of Science PLoS ONE 4, e4257.CrossRefGoogle ScholarPubMed
Supplementary material: File

Engelmann supplementary material

Engelmann supplementary material 1

Download Engelmann supplementary material(File)
File 6 MB
12
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hyper-responsivity to losses in the anterior insula during economic choice scales with depression severity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Hyper-responsivity to losses in the anterior insula during economic choice scales with depression severity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Hyper-responsivity to losses in the anterior insula during economic choice scales with depression severity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *