Skip to main content

Implicit learning in individuals with autism spectrum disorders: a meta-analysis

  • F. Foti (a1) (a2), F. De Crescenzo (a3), G. Vivanti (a4) (a5), D. Menghini (a3) and S. Vicari (a3)...

Individuals with autism spectrum disorders (ASDs) are characterized by social communication difficulties and behavioural rigidity. Difficulties in learning from others are one of the most devastating features of this group of conditions. Nevertheless, the nature of learning difficulties in ASDs is still unclear. Given the relevance of implicit learning for social and communicative functioning, a link has been hypothesized between ASDs and implicit learning deficit. However, studies that have employed formal testing of implicit learning in ASDs provided mixed results.


We undertook a systematic search of studies that examined implicit learning in ASDs using serial reaction time (SRT), alternating serial reaction time (ASRT), pursuit rotor (PR), and contextual cueing (CC) tasks, and synthesized the data using meta-analysis. A total of 11 studies were identified, representing data from 407 individuals with ASDs and typically developing comparison participants.


The results indicate that individuals with ASDs do not differ in any task considered [SRT and ASRT task: standardized mean difference (SMD) −0.18, 95% confidence interval (CI) −0.71 to 0.36; PR task: SMD −0.34, 95% CI −1.04 to 0.36; CC task: SMD 0.27, 95% CI −0.07 to 0.60].


Based on our synthesis of the existing literature, we conclude that individuals with ASDs can learn implicitly, supporting the hypothesis that implicit learning deficits do not represent a core feature in ASDs.

Corresponding author
* Address for correspondence: Dr F. Foti, Department of Psychology, ‘Sapienza’ University of Rome, Via dei Marsi 78, 00185 Rome, Italy. (Email:
Hide All

References marked with an asterisk (*) indicate studies included in the meta-analysis.

Alcock, K (2006). The development of oral motor control and language. Down's Syndrome, Research and Practice 11, 18.
Allen, G, Müller, RA, Courchesne, E (2004). Cerebellar function in autism: functional magnetic resonance image activation during a simple motor task. Biological Psychiatry 56, 269278.
APA (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th edn (DSM-5). American Psychiatric Publishing: Arlington, VA.
Baddelely, AD (2002). The psychology of memory. In The Handbook of Memory Disorders (ed. Baddelely, A.D., Kopelman, M.D. and Wilson, B.A.), pp. 315. John Wiley & Sons, Ltd: Chichester, UK.
* Barnes, KA, Howard, DV, Howard, JH, Gilotty, L, Kenworthy, L, Gaillard, WD, Vaidya, CJ (2008). Intact implicit learning of spatial context and temporal sequences in childhood autism spectrum disorder. Neuropsychlogy 22, 563570.
Berridge, KC, Winkielman, P (2003). What is an unconscious emotion: the case for unconscious ‘liking’. Cognition and Emotion 17, 181211.
Bishop, DV (2002). Motor immaturity and specific speech and language impairment: evidence for a common genetic basis. American Journal of Medical Genetics 114, 5663.
Boucher, J, Bowler, DM (2008). Memory in Autism: Theory and Evidence. Cambridge University Press, Cambridge.
Bowler, DM, Gardiner, JM, Gaigg, SB (2007). Factors affecting conscious awareness in the recollective experience of adults with Asperger's syndrome. Consciousness and Cognition 16, 124143.
* Brown, J, Aczél, B, Jiménez, L, Kaufman, SB, Plaisted-Grant, K (2010). Intact implicit learning in autism spectrum conditions. Quarterly Journal of Experimental Psychology 63, 17891812.
Chun, MM, Jiang, Y (1998). Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognitive Psychology 36, 2871.
Cleeremans, A, Dienes, Z (2008). Computational models of implicit learning. In Cambridge Handbook of Computational Psychology (ed. Sun, R.), pp. 396421. Cambridge University Press: Cambridge, UK.
Cohen, J (1992). A power primer. Psychological Bulletin 112, 155159.
Courchesne, E, Saitoh, O, Yeung-Courchesne, R, Press, GA, Lincoln, AJ, Haas, RH, Schreibman, L (1994). Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. American Journal of Roentgenology 162, 123130.
Courchesne, E, Yeung-Courchesne, R, Press, GA, Hesselink, JR, Jernigan, TL (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine 318, 13491354.
D'Cruz, AM, Mosconi, MW, Steele, S, Rubin, LH, Luna, B, Minshew, N, Sweeney, JA (2009). Lateralized response timing deficits in autism. Biological Psychiatry 66, 393397.
DerSimonian, R, Laird, N (1986). Meta-analysis in clinical trials. Controlled Clinical Trials 7, 177188.
Destrebecqz, A, Cleeremans, A (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic Bulletin and Review 8, 343350.
Destrebecqz, A, Cleeremans, A (2003). Temporal effects in sequence learning. In Attention and Implicit Learning (ed. Jiménez, L.), pp. 181213. John Benjamins Publishing Company: Amsterdam, Netherlands.
Eslinger, P, Damasio, AR (1986). Preserved motor learning in Alzheimer's disease: implications for anatomy and behavior. Journal of Neuroscience 6, 30063009.
Gabrieli, JD, Stebbins, GT, Singh, J, Willingham, DB, Goetz, CG (1997). Intact mirror-tracing and impaired rotary pursuit skill learning in patients with Huntington's disease: evidence for dissociable memory systems in skill learning. Neuropsychology 11, 272281.
* Gidley Larson, JC, Mostofsky, SH (2008). Evidence that the pattern of visuomotor sequence learning is altered in children with autism. Autism Research 1, 341353.
Goh, S, Peterson, BS (2012). Imaging evidence for disturbances in multiple learning and memory systems in persons with autism spectrum disorders. Developmental Medicine and Child Neurology 54, 208213.
* Gordon, B, Stark, S (2007). Procedural learning of a visual sequence in individuals with autism. Focus on Autism and Other Developmental Disabilities 22, 1422.
Gras-Vincendon, A, Bursztejn, C, Danion, JM (2008). Functioning of memory in subjects with autism. Encephale 34, 550556.
Hashimoto, T, Tayama, M, Miyazaki, M, Murakawa, K, Kuroda, Y (1993). Brainstem and cerebellar vermis involvement in autistic children. Journal of Child Neurology 8, 149153.
Hayward, DA, Shore, DI, Ristic, J, Kovshoff, H, Iarocci, G, Mottron, L, Burack, JA (2012). Flexible visual processing in young adults with autism: the effects of implicit learning on a global-local task. Journal of Autism and Developmental Disorders 42, 23832392.
Hedges, LV, Olkin, I (1985). Statistical Methods for Meta-Analysis. Academic Press: Orlando, FL.
Heindel, W, Salmon, D, Shults, C, Walicke, P, Butters, N (1989). Neuropsychological evidence for multiple implicit memory systems: a comparison of Alzheimer's, Huntington's, and Parkinson's disease patients. Journal of Neuroscience 9, 582587.
Higgins, JP, Thompson, SG, Deeks, JJ, Altman, DG (2003). Measuring inconsistency in meta-analyses. British Medical Journal 327, 557560.
Higgins, JPT, Green, S (eds) (updated March 2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 The Cochrane Collaboration, 2011 (
Hodge, SM, Makris, N, Kennedy, DN, Caviness, VS Jr., Howard, J, McGrath, L, Steele, S, Frazier, JA, Tager-Flusberg, H, Harris, GJ (2010). Cerebellum, language, and cognition in autism and specific language impairment. Journal of Autism and Developmental Disorders 40, 300316.
Howlin, P (2005). Health care and the autism spectrum. Journal of the Royal Society of Medicine 98, 382.
Inui, N, Suzuki, K (1998). Practice and serial reaction time of adolescents with autism. Perceptual and Motor Skills 86, 403410.
Jacobs, DH, Adair, JC, Williamson, DJ, Na, DL, Gold, M, Foundas, AL, Shuren, JE, Cibula, JE, Heilman, KM (1999). Apraxia and motor-skill acquisition in Alzheimer's disease are dissociable. Neuropsychologia 37, 875880.
Jiang, Y, Chun, MM (2001). Selective attention modulates implicit learning. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology 54, 11051124.
Kaufmann, WE, Cooper, KL, Mostofsky, SH, Capone, GT, Kates, WR, Newschaffer, CJ, Bukelis, I, Stump, MH, Jann, AE, Lanham, DC (2003). Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. Journal of Child Neurology 18, 463470.
Klin, A, Jones, W, Schultz, RT (2003). The inactive mind, or from actions to cognition: lessons from autism. Philosophical Transactions of the Royal Society of London, Series B 358, 345360.
Knowlton, BJ, Mangels, JA, Squire, LR (1996). A neostriatal habit learning system in humans. Science 273, 13991402.
Kourkoulou, A, Kuhn, G, Findlay, JM, Leekam, SR (2013). Eye movement difficulties in autism spectrum disorder: implications for implicit contextual learning. Autism Research 6, 177189.
* Kourkoulou, A, Leekam, SR, Findlay, JM (2012). Implicit learning of local context in autism spectrum disorder. Journal of Autism and Developmental Disorders 42, 244256.
Kramvis, I, Mansvelder, HD, Loos, M, Meredith, R (2013). Hyperactivity, perseveration and increased responding during attentional rule acquisition in the Fragile X mouse model. Frontiers in Behavioral Neuroscience 7, 172.
Lewis, M, Kim, SJ (2009). The pathophysiology of restricted repetitive behavior. Journal of Neurodevelopmental Disorders 1, 114132.
Lieberman, MD (2000). Intuition: a social cognitive neuroscience approach. Psychological Bulletin 126, 109137.
* Limoges, É, Bolduc, C, Berthiaume, C, Mottron, L, Godbout, R (2013). Relationship between poor sleep and daytime cognitive performance in young adults with autism. Research in Developmental Disabilities 34, 13221335.
Lind, S, Bowler, D (2008). Episodic memory and autonoetic consciousness in autistic spectrum disorders: the roles of self-awareness, representational abilities and temporal cognition. In Memory in Autism: Theory and Evidence, 1st edn (ed. Boucher, J. and Bowler, D.), pp. 166187. Cambridge University Press: Cambridge.
Lord, R, Hulme, C (1988). Patterns of rotary pursuit performance in clumsy and normal children. Journal of Child Psychology and Psychiatry 29, 691701.
Lord, C, Rutter, M, Le-Couteur, A (1994). Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders 24, 659685.
Lord, C, Rutter, M, Goode, S, Heemsbergen, J, Jordan, H, Mawhood, L, Schopler, E (1989). Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders 19, 185212.
Martins, GJ, Shahrokh, M, Powell, EM (2011). Genetic disruption of Met signaling impairs GABAergic striatal development and cognition. Neuroscience 176, 199209.
Mayo, J, Eigsti, IM (2012). Brief report: a comparison of statistical learning in school-aged children with high functioning autism and typically developing peers. Journal of Autism and Developmental Disorders 42, 24762485.
McTighe, SM, Neal, SJ, Lin, Q, Hughes, ZA, Smith, DG (2013). The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex. PLoS ONE 8, e62189.
Molinari, M, Leggio, MG, Solida, A, Ciorra, R, Misciagna, S, Silveri, MC, Petrosini, L (1997). Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain 120, 17531762.
Mosconi, MW, Kay, M, D'Cruz, AM, Guter, S, Kapur, K, Macmillan, C, Stanford, LD, Sweeney, JA (2010). Neurobehavioral abnormalities in first-degree relatives of individuals with autism. Archives of General Psychiatry 67, 830840.
* Mostofsky, SH, Goldberg, MC, Landa, RJ, Denckla, MB (2000). Evidence for a deficit in procedural learning in children and adolescents with autism: implications for cerebellar contribution. Journal of the International Neuropsychological Society 6, 752759.
* Müller, RA, Cauich, C, Rubio, MA, Mizuno, A, Courchesne, E (2004). Abnormal activity patterns in premotor cortex during sequence learning in autistic patients. Biological Psychiatry 56, 323332.
Müller, RA, Kleinhans, N, Kemmotsu, N, Pierce, K, Courchesne, E (2003). Abnormal variability and distribution of functional maps in autism: an FMRI study of visuomotor learning. American Journal of Psychiatry 160, 18471862.
Müller, RA, Pierce, K, Ambrose, JB, Allen, G, Courchesne, E (2001). Atypical patterns of cerebral motor activation in autism: a functional magnetic resonance study. Biological Psychiatry 49, 665676.
Muslimovic, D, Post, B, Speelman, JD, Schmand, B (2007). Motor procedural learning in Parkinson's disease. Brain 130, 28872897.
* Nemeth, D, Janacsek, K, Balogh, V, Londe, Z, Mingesz, R, Fazekas, M, Jambori, S, Danyi, I, Vetro, A. (2010). Learning in autism: implicitly superb. PLoS ONE 5, e11731.
Niedenthal, P (1990). Implicit Perception of Affective Information. Journal of Experimental Social Psychology 26, 505527.
Nissen, MJ, Bullemer, P (1987). Attentional requirements of learning: evidence from performance measures. Cognitive Psychology 19, 132.
Nuske, H, Vivanti, G, Dissanayake, C (2013). Are emotion impairments unique to, universal, or specific in autism spectrum disorder? A comprehensive review. Cognition and Emotion 27, 10421061.
O'Riordan, MA, Plaisted, KC, Driver, J, Baron-Cohen, S (2001). Superior visual search in autism. Journal of Experimental Psychology. Human Perception and Performance 27, 719730.
Perruchet, P, Pacton, S (2006). Implicit learning and staticial learning: one phenomenon, two approaches. Trends in Cognitive Sciences 10, 233238.
Pring, L (2005). Savant talent. Developmental Medicine and Child Neurology 47, 500503.
Quenouille, M (1949). Approximate tests of correlation in time series. Journal of the Royal Statistical Society: Series B 11, 6884.
Reber, PJ (2013). The neural basis of implicit learning and memory: a review of neuropsychological and neuroimaging research. Neuropsychologia 51, 20262042.
Relkovic, D, Doe, CM, Humby, T, Johnstone, KA, Resnick, JL, Holland, AJ, Hagan, JJ, Wilkinson, LS, Isles, AR (2010). Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader-Willi syndrome. European Journal of Neuroscience 31, 156164.
Renner, P, Klinger, LG, Klinger, MR (2000). Implicit and explicit memory in autism: is autism an amnesic disorder? Journal of Autism and Developmental Disorders 30, 314.
Rogers, TD, McKimm, E, Dickson, PE, Goldowitz, D, Blaha, CD, Mittleman, G (2013). Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Frontiers in Systems Neuroscience 7, 15. doi: 10.3389/fnsys.2013.00015.
Rosenthal, R, DiMatteo, MR (2001). Meta-analysis: recent developments in quantitative methods for literature reviews. Annual Review of Psychology 52, 5982.
Roth, R, Baribeau, J, Milovan, D, O'Conner, K, Todorov, C (2004). Procedural and declarative memory in obsessive–compulsive disorder. Journal of the International Neuropsychological Society 10, 647654.
Sahyoun, CP, Belliveau, JW, Soulières, I, Schwartz, S, Mody, M (2010). Neuroimaging of the functional and structural networks underlying visuospatial vs. linguistic reasoning in high-functioning autism. Neuropsychologia 48, 8695.
Salmond, CH, Ashburner, J, Connelly, A, Friston, KJ, Gadian, DG, Vargha-Khadem, F (2005). The role of the medial temporal lobe in autistic spectrum disorders. European Journal of Neuroscience 22, 764772.
Schmahmann, JD (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Journal of Neuropsychiatry and Clinical Neurosciences 16, 367378.
Schmahmann, JD, Sherman, JC (1998). The cerebellar cognitive affective syndrome. Brain 121, 561579.
Scott-Van Zeeland, AA, Dapretto, M, Ghahremani, DG, Poldrack, RA, Bookheimer, SY (2010). Reward processing in autism. Autism Research 3, 5367.
Seger, CA (1997). Two forms of sequential implicit learning. Consciousness and Cognition 6, 108131.
Seger, CA (1994). Implicit learning. Psychological Bulletin 115, 163196.
Seger, CA (1998). Multiple forms of implicit learning. In Handbook of Implicit Learning (ed. Stadler, M.A. and Frensch, P.A.), pp. 295320. Sage Publications: Thousand Oaks, CA.
Shanks, DR, Rowland, LA, Ranger, MS (2005). Attentional load and implicit sequence learning. Psychological Research 69, 369382.
Siegert, RJ, Taylor, KD, Weatherall, M, Abernethy, DA (2006). Is implicit sequence learning impaired in Parkinson's disease? A meta-analysis. Neuropsychology 20, 490495.
Smith, JG, McDowall, J (2006). The implicit sequence learning deficit in patients with Parkinson's disease: a matter of impaired sequence integration? Neuropsychologia 44, 275288.
Squire, LR (1994). Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. In Memory Systems 1994 (ed. Schacter, D.L. and Tulving, E.), pp. 203231. MIT Press: Cambridge, Massachusetts.
Squire, LR (2004). Memory systems of the brain: a brief history and current perspective. Neurobiology of Learning and Memory 82, 171177.
* Travers, BG, Klinger, MR, Mussey, JL, Klinger, LG (2010). Motor-linked implicit learning in persons with autism spectrum disorders. Autism Research 3, 6877.
* Travers, BG, Powell, PS, Mussey, JL, Klinger, LG, Crisler, ME, Klinger, MR (2013). Spatial and identity cues differentially affect implicit contextual cueing in adolescents and adults with autism spectrum disorder. Journal of Autism and Developmental Disorders 43, 23932404.
Trent, S, Dean, R, Veit, B, Cassano, T, Bedse, G, Ojarikre, OA, Humby, T, Davies, W (2013) Biological mechanisms associated with increased perseveration and hyperactivity in a genetic mouse model of neurodevelopmental disorder. Psychoneuroendocrinology 38, 13701380.
Tukey, JW (1958). Bias and confidence in not quite large samples. Annals of Mathematical Statistics 29, 614.
Ullman, MT (2004). Contributions of memory circuits to language: the declarative/procedural model. Cognition 92, 231270.
Ullman, MT (2001). The declarative/procedural model of lexicon and grammar. Journal of Psycholinguistic Research 30, 3769.
Ungerleider, LG, Doyon, J, Karni, A (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory 78, 553564.
van Gorp, WG, Altshuler, L, Theberge, DC, Mintz, J (1999). Declarative and procedural memory in bipolar disorder. Biological Psychiatry 46, 525531.
Vivanti, G, Barbaro, J, Hudry, K, Dissanayake, C, Prior, M (2013). Intellectual development in autism spectrum disorders: new insights from longitudinal studies. Frontiers in Human Neuroscience 7, 354.
Vivanti, G, Dissanayake, C (2014). Propensity to imitate in autism is not modulated by the model's gaze direction: an eye-tracking study. Autism Research 7, 392399.
Vivanti, G, Hamilton, A (2014). Imitation in Autism Spectrum Disorders. In The Handbook of Autism and Developmental Disorders (ed. Volkmar, F., Paul, R., Rogers, S. and Pelphrey, K.), pp. 278301. Wiley: New York.
Vivanti, G, Rogers, SJ (2014). Autism and the mirror neuron system: insights from learning and teaching. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369, 20130184.
Vivanti, G, Trembath, D, Dissanayake, C (2014). Mechanisms of Imitation Impairment in Autism Spectrum Disorder. Journal of Abnormal Child Psychology. Published online: 16 April 2014. doi: 10.1007/s10802-014-9874-9.
Walenski, M, Tager-Flusberg, H, Ullman, MT (2006). Language in autism. In Understanding Autism: From Basic Neuroscience to Treatment (ed. , S. , Moldin and Rubenstein, J.), pp. 175203. Taylor & Francis Books: Boca Raton, FL.
Ward, H, Shum, D, Wallace, G, Boon, J (2002). Pediatric traumatic brain injury and procedural memory. Journal of Clinical and Experimental Neuropsychology 24, 458470.
Whiting, P, Rutjes, AW, Reitsma, JB, Bossuyt, PM, Kleijnen, J (2003). The development of QUADAS: atool for the quality assessment of studies of diagnostic accuracy included in systematic Reviews. BMC Medical Research Methodology 3, 25.
Willingham, DB, Wells, LA, Farrell, JM, Stemwedel, ME (2000). Implicit motor sequence learning is represented in response locations. Memory and Cognition 28, 366375.
Witt, K, Nühsman, A, Deuschl, G (2002). Intact artificial grammar learning in patients with cerebellar degeneration and advanced Parkinson's disease. Neuropsychologia 40, 15341540.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Psychological Medicine
  • ISSN: 0033-2917
  • EISSN: 1469-8978
  • URL: /core/journals/psychological-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Foti Supplementary Material

 Word (15 KB)
15 KB


Altmetric attention score

Full text views

Total number of HTML views: 18
Total number of PDF views: 220 *
Loading metrics...

Abstract views

Total abstract views: 960 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.