Skip to main content
×
×
Home

Information:

  • Access
  • Open access
  • Cited by 3
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Capouch, Samuel D. Farlow, Martin R. and Brosch, Jared R. 2018. A Review of Dementia with Lewy Bodies' Impact, Diagnostic Criteria and Treatment. Neurology and Therapy,

    Jellinger, Kurt A. and Korczyn, Amos D. 2018. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease?. BMC Medicine, Vol. 16, Issue. 1,

    Jellinger, Kurt A. 2018. Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. Journal of Neural Transmission, Vol. 125, Issue. 4, p. 615.

    ×

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Non-pharmacological interventions for Lewy body dementia: a systematic review
        Available formats
        ×
        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Non-pharmacological interventions for Lewy body dementia: a systematic review
        Available formats
        ×
        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Non-pharmacological interventions for Lewy body dementia: a systematic review
        Available formats
        ×
Export citation

Abstract

Lewy body dementia (consisting of dementia with Lewy bodies and Parkinson's disease dementia) is a common neurodegenerative disease characterised by visual hallucinations, fluctuating attention, motor disturbances, falls, and sensitivity to antipsychotics. This combination of features presents challenges for pharmacological management. Given this, we sought to review evidence for non-pharmacological interventions with patients with Lewy body dementia and their carers. Bibliographic databases were searched using a wide range of search terms and no restrictions were placed on study design, language, or clinical setting. Two reviewers independently assessed papers for inclusion, rated study quality, and extracted data. The search identified 21 studies including two randomised controlled trials with available subgroup data, seven case series, and 12 case studies. Most studies reported beneficial effects of the interventions used, though the only sizeable study was on dysphagia, showing a benefit of honey-thickened liquids. Given the heterogeneity of interventions and poor quality of the studies overall, no quantitative synthesis was possible. Overall, identified studies suggested possible benefits of non-pharmacological interventions in Lewy body dementia, but the small sample sizes and low quality of studies mean no definite recommendations can be offered. Our findings underscore the clear and urgent need for future research on this topic.

Introduction

Lewy body dementia is a common neurodegenerative disease in older people (Walker et al. 2015). It is responsible for 5–25% of diagnosed cases of dementia (Vann Jones & O'Brien, 2014), giving it a likely prevalence of around 1% in people over 65 years old (Ballard et al. 2013). The disease is characterised by fluctuations in attention and alertness, recurrent visual hallucinations, and parkinsonian motor features (McKeith et al. 2005). It is broadly considered to consist of two related disorders – dementia with Lewy bodies and Parkinson's disease dementia – that are distinguished by the relative timing of when cognitive and motor symptoms appear. Dementia with Lewy bodies is diagnosed if dementia develops either prior to parkinsonian motor symptoms or within 1 year of their onset. By contrast, Parkinson's disease dementia is diagnosed if dementia develops after 1 year of parkinsonian motor symptoms. The two disorders share a common underlying pathophysiology, but likely vary in the sequence by which brain areas underpinning cognition and motor function are affected (Aarsland et al. 2009; McKeith, 2009).

Lewy body dementia poses a number of challenges for clinical management that differ from those of other dementias. People with Lewy body dementia typically experience visual hallucinations and may be more likely to have delusions than people with other types of dementia (Ballard et al. 1999; Aarsland et al. 2007; Brodaty et al. 2015). These types of symptoms can be very distressing to both patients and their carers, and are a risk factor for early institutionalisation (Black & Almeida, 2004; Brodaty et al. 2014). Pharmacological management, however, is limited because of the condition's adverse sensitivity to neuroleptics (antipsychotic drugs) (McKeith et al. 1992; Aarsland et al. 2005; Ballard et al. 2013). Antidepressants also appear to be poorly tolerated (Culo et al. 2010) with no clear evidence that they are effective for treating mood disturbances in this population (Ballard et al. 2013; Stinton et al. 2015), though further research is needed. At the same time, patients typically have parkinsonian motor disturbances and treatment responses are limited by the fact that some antiparkinson medications can exacerbate psychotic symptoms (McKeith et al. 2005). People with Lewy body dementia are also prone to falls, which further increases the risks of using medications that exacerbate orthostatic hypotension, impair cognition, or otherwise predispose to falls. Finally, people with Lewy body dementia may undergo faster cognitive decline (Rongve et al. 2016), require higher costs of care (Murman et al. 2003; Boström et al. 2007; Vossius et al. 2014), result in greater caregiver burden (Svendsboe et al. 2016), and progress more quickly to death (Oesterhus et al. 2014) than people with Alzheimer's disease and other dementias.

Despite these challenges and the relatively high prevalence of the disease, the evidence base for intervention strategies remains unclear. A previous systematic review and meta-analysis of pharmacological treatments for Lewy body dementia identified a lack of high-quality evidence for commonly used drugs in this population, though found evidence for efficacy of cholinesterase inhibitors (Stinton et al. 2015). Another systematic review evaluated the benefits of exercise in Lewy body dementia and likewise found little high-quality research (Inskip et al. 2016). There is, however, no synthesis of evidence for non-pharmacological options more generally for people with Lewy body dementia. Such options have been shown to be helpful in other types of dementia (Brodaty & Arasaratnam, 2012; Livingston et al. 2014; Orgeta et al. 2015), but are likely to be especially important in Lewy body dementia given the risks of medications in this population. In this paper, we addressed this issue and reviewed studies that assessed non-pharmacological interventions for patients with Lewy body dementia.

Method

The protocol for this systematic review was registered at PROSPERO (registration number CRD42016050492).

Eligibility criteria

The review focused on primary research that assessed a non-pharmacological intervention for either patients with Lewy body dementia or carers of such patients. The review considered studies evaluating non-pharmacological interventions in the broader categories of dementia or Parkinson's disease if the results of a Lewy body dementia subgroup were available. Studies that were confounded by a concurrent pharmaceutical intervention (i.e. medication initiated at the same time as a non-pharmacological intervention or given to one group in a study but not the other) were excluded. There were no other restrictions on study design and no requirements for a comparator group. There were also no restrictions on language, time period, or clinical context in which the study was conducted.

Search strategy

The search identified studies through bibliographic databases, trial registers, and the grey literature. Bibliographic databases and trial registers included the following: Medline (1946–present); PreMedline, PubMed; EMBASE (1974–present), Scopus, Web of Science (1900–current); PsychInfo (1806–present); CINAHL (1981–present); Cochrane libraries: Cochrane database of systematic reviews (2005–October 2016), Cochrane central register of controlled trials (August 2016), Cochrane Methodology register (3rd–Quarter 2012); other EBM databases: ACP journal club (1991–September 2016), Database of Abstracts of Reviews of Effects (1st-quarter 2015), Health technology assessment (3rd-quarter 2016), and NHS economic evaluation (1st-quarter 2015); Ageline (1978–present); ALOIS; AMED (Allied and Complementary Medicine; 1985–present); PEDro (Physiotherapy Evidence Database; 1929–present); Social work Abstracts (1968–present); and the National Association of Social Workers (NASW) clinical register (14th edition). The grey literature was searched using such resources as SIGLE (System for Information on Grey Literature in Europe), NTIS (National Technical Information Service) database, and PsychEXTRA (1908–present).

The search strategy used only population and intervention terms to maximise the likelihood of identifying relevant studies (comparator and outcome terms were not used). The population was people with Lewy body dementia or their carers. This was identified using the search terms: [(Lewy OR Park*) and Dementia]. Interventions were any non-pharmacological treatment and identified using a wide range of terms: (activit*, acupuncture, alternative, animal, aromatherapy, art therapy, assisted, balance, behav*, bicycle, calisthenics, carer intervention, caregiver intervention, CBT, Chi gong, cognit*, cognitive behavioral therapy, cognitive behavioural therapy, counsel*, creative arts, dance, dancing, diet, direct current stimulation, drama, ECT, educat*, electroconvulsive therapy, enhanc*, environmental intervention, environmental modification, exercise, flexibility, humor therapy, humour therapy, hydrotherapy, intervention*, leisure, light therapy, management, martial arts, massage, meditation, Montessori, multisensory, music, non-pharm*, nonpharm*, nutrition, occupational therapy, pet therapy, physical activity, physical therapy, physiotherapy, pilates, psychoeducation, psychol*, psychosocial, psychotherapy, Qi gong, reality orientation, recreation*, reminiscence, resistance training, run*, sensory, simulated presence, stimulation, Snoezelen, support*, support group*, swim*, tai chi, therap*, therapeutic activity, TMS, training, training carers, training caregivers, transcranial magnetic stimulation, treatment*, validation, weight training, yoga). Searches were conducted on 30 October 2016.

In addition to bibliographic database searches, the reference lists of papers included in the review and previous systematic reviews on both Lewy body dementia and non-pharmacological interventions were checked for relevant papers. Advice was also sought from experts in the field.

Study selection

Two reviewers (MHC and LQ) independently assessed search results for inclusion by title and abstract. All articles deemed relevant by either reviewer were obtained in full. Both reviewers then independently evaluated full-text articles for inclusion. Any disagreements were resolved through discussion or, if necessary, with a third reviewer (JTO).

Data extraction

Two reviewers independently extracted relevant data from publications using a standardised form. This included participant details (e.g. demographics, number, recruitment, clinical context, dementia severity), intervention type, study design, measures, and results. Qualitative data were also collated.

The primary outcomes were measures of cognition, function, neuropsychiatric symptoms, and motor symptoms. The secondary outcomes were measures of any other clinically relevant outcomes, such as quality of life, carer burden, financial costs, other symptoms (sleep or autonomic disturbances), and objective endpoints (e.g. falls, hospitalisation, institutionalisation, mortality). Secondary outcomes also included the perceived acceptability of treatments, reported side effects, and dropout rates (a measure of treatment acceptability).

Quality assessment

Two reviewers independently assessed study quality and risk of bias using standardised tools. These included the Effective Public Health Practice Project Quality Assessment Tool for Quantitative Studies (Effective Public Health Practice Project, 2007; Armijo-Olivo et al. 2012) and the NICE Methodology Checklist: Qualitative Studies (NICE, 2016). Any disagreements were resolved through discussion.

Data synthesis

Although a quantitative synthesis of findings using meta-analytic techniques was originally intended, this was not possible due to the small sample sizes and poor quality of the included studies. As a result, only a descriptive synthesis was provided.

Results

Search results

The search identified 73 093 publications, of which 30 419 were unique and 42 674 were duplicates. Of these, 76 were considered by one or both reviewers to be potentially relevant and obtained in full. In turn, 21 studies were found eligible for inclusion (a flow diagram in PRISMA format is shown in Fig. 1). The included studies consisted of 12 case studies (Kung & O'Connor, 2002; Loher et al. 2002; Graff et al. 2006; Cheston et al. 2007; Huh et al. 2008; Freund et al. 2009; Ciro et al. 2013; Gil-Ruiz et al. 2013; Tabak et al. 2013; Dawley, 2015; Hsu et al. 2015; Ricciardi et al. 2015), seven case series (Rasmussen et al. 2003; Rochester et al. 2009; Takahashi et al. 2009; Ota et al. 2012; Elder et al. 2016; Yamaguchi et al. 2016) – two of which were reported in the same paper (Takahashi et al. 2009) – and two randomised controlled trials (Logemann et al. 2008; Telenius et al. 2015). Both randomised trials focused on the broader conditions of dementia and/or Parkinson's disease but had separate results for a Lewy body dementia subgroup available. One case report was reported in two separate papers (Freund et al. 2009; Barnikol et al. 2010); our descriptive synthesis focused on the more detailed of these papers (Freund et al. 2009). A further case report on electroconvulsive therapy was excluded (Fujiwara et al. 2004) because of a concurrent pharmacological intervention. Twelve studies focused on dementia with Lewy bodies (Kung & O'Connor, 2002; Rasmussen et al. 2003; Cheston et al. 2007; Huh et al. 2008; Takahashi et al. 2009; Ota et al. 2012; Ciro et al. 2013; Gil-Ruiz et al. 2013; Hsu et al. 2015; Telenius et al. 2015; Yamaguchi et al. 2016), eight focused on Parkinson's disease dementia (Loher et al. 2002; Graff et al. 2006; Logemann et al. 2008; Freund et al. 2009; Rochester et al. 2009; Tabak et al. 2013; Dawley, 2015; Ricciardi et al. 2015), and one included patients from both groups (Elder et al. 2016). A summary of studies is shown in Table 1.

Fig. 1. PRISMA flow chart for study selection. *Two of the studies were reported in the same article.

Table 1. Studies assessing a non-pharmacological intervention for Lewy body dementia

DLB, dementia with Lewy bodies; PDD, Parkinson's disease dementia.

Quality assessment

Of the 21 studies, 19 were rated as poor quality due to their small sample size, uncertainties about recruitment, and the lack of a control group. One randomised controlled trial, which focused on exercise in nursing homes for patients with dementia (Telenius et al. 2015), was evaluated as poor quality with respect to Lewy body dementia specifically (it only included four participants with the condition and these participants did not complete all tasks) (Inskip et al. 2016). The other randomised controlled trial (Logemann et al. 2008), which investigated dietary fluid and postural interventions for dysphagia, was evaluated as moderate quality. This study, however, was limited by its lack of blinding and the fact that it relied on measures of immediate efficacy in a research setting, without any longer term follow-up or measures of real-world effectiveness. It was also limited by the absence of a control group that did not receive a treatment, making it difficult to establish the absolute effectiveness of the interventions.

Participants

The total number of participants across the included studies was 195. This comprised 44 patients with dementia with Lewy bodies and 151 patients with Parkinson's disease dementia (of whom, 132 were from one study; Logemann et al. 2008). Demographic information was not consistently reported. It was not provided for the subgroup of 132 patients with Parkinson's disease dementia in the largest study (Logemann et al. 2008) and for two case series (Ota et al. 2012; Yamaguchi et al. 2016) – altogether 140 participants. Of the data available (n = 55), the mean age of participants was 70.6 years (s.d. = 8.2) and included 27 males and 28 females. Measures of patients’ cognition and dementia severity were lacking from the majority of reports. Of the 21 studies, nine recruited participants from nursing homes or hospitals, five recruited participants from the community, and seven did not report participants’ residential status. One of the studies that recruited participants from nursing homes examined the effect of an intervention on both a patient with dementia with Lewy bodies and her carers (Huh et al. 2008).

Interventions

Interventions included carer education (Huh et al. 2008), psychological interventions (for visual hallucinations) (Ota et al. 2012), physical exercise (Tabak et al. 2013; Telenius et al. 2015), gait cueing (Rochester et al. 2009), environmental modification (Gil-Ruiz et al. 2013) (for mirrored self-misidentification, a delusion that usually occurs in the context of dementia; Connors & Coltheart, 2011; Connors et al. 2015), music (Hsu et al. 2015), simulated presence (Cheston et al. 2007), occupational therapy (Graff et al. 2006; Ciro et al. 2013), physical therapy (Dawley, 2015), dietary fluid and postural interventions to prevent aspiration (Logemann et al. 2008), electroconvulsive therapy (Kung & O'Connor, 2002; Rasmussen et al. 2003; Takahashi et al. 2009; Yamaguchi et al. 2016), transcranial magnetic stimulation (Takahashi et al. 2009), transcranial direct current stimulation (Elder et al. 2016), and deep brain stimulation (Loher et al. 2002; Freund et al. 2009; Ricciardi et al. 2015). The most studied interventions were electroconvulsive therapy (four studies) and deep brain stimulation (three studies).

Effectiveness of interventions

Given the heterogeneity of interventions and the poor quality of the research evidence, no quantitative synthesis was possible. A descriptive summary of individual studies is provided in Table 1.

All studies reported some effectiveness of their respective intervention. The strongest evidence came from the randomised control trial that assessed interventions to prevent fluid aspiration in participants with dysphagia (Logemann et al. 2008). This trial compared honey-thickened fluids, nectar-thickened fluids, and a chin-down posture in 132 patients with Parkinson's disease dementia (see Table 1). It found that the use of honey-thickened fluids was superior to the other two methods in preventing fluid aspiration as measured by videofluorographic swallow studies.

Four small uncontrolled studies (Kung & O'Connor, 2002; Rasmussen et al. 2003; Takahashi et al. 2009; Yamaguchi et al. 2016) – involving 22 participants in total – found that electroconvulsive therapy had some effectiveness in treating depression in dementia with Lewy bodies. In one of these studies, two patients exhibited confusion immediately after electroconvulsive therapy (Rasmussen et al. 2003); in another study, an unspecified number displayed signs of autonomic dysfunction, though without any lasting effects (Takahashi et al. 2009). No other adverse events were reported. Another three case studies of deep brain stimulation (Loher et al. 2002; Freund et al. 2009; Ricciardi et al. 2015) identified benefits in either cognition or motor symptoms depending on the location of stimulation in patients with Parkinson's disease dementia. All three studies used different brain locations for stimulation. None of these studies reported adverse effects.

Other individual studies variously reported benefits of carer education for reducing agitation (Huh et al. 2008); psychological interventions for reducing distress around visual hallucinations (Ota et al. 2012); physical exercise to improve gait and function (Tabak et al. 2013; Telenius et al. 2015); gait cueing to improve gait speed (Rochester et al. 2009); environmental modification to reduce the distress associated with mirrored self-misidentification delusion (Gil-Ruiz et al. 2013); music therapy to reduce agitation (Hsu et al. 2015); simulated presence to reduce distress (Cheston et al. 2007); occupational therapy interventions to improve functional ability (Graff et al. 2006; Ciro et al. 2013); physical therapy to improve gait (Dawley, 2015); dietary fluid and postural interventions to prevent aspiration (Logemann et al. 2008); transcranial magnetic stimulation to reduce depression (Takahashi et al. 2009); and transcranial direct current stimulation to improve attention (Elder et al. 2016) (see Table 1). For all these studies, however, limitations in their design, including small sample sizes, lack of blinding, and lack of adequate controls, mean that it is not possible to rule out confounding, selection bias, experimenter expectancy, publication bias, and other causes for the reported effects.

Discussion

The systematic review identified very little research on non-pharmacological interventions in Lewy body dementia. No randomised control trials focusing specifically on Lewy body dementia were identified and the majority of research consisted of case studies and case series. Of the studies identified, the best quality evidence came from a randomised control trial that focused on preventing fluid aspiration in Parkinson's disease patients with dysphagia (Logemann et al. 2008). As already noted, however, even this study was limited by the fact that it only examined the immediate effects of interventions in an experimental context and did not assess longer term effectiveness in more naturalistic settings. Overall, given the heterogeneity of interventions, small sample sizes, and poor quality of research, no treatment recommendations can be offered.

The lack of research in this area is in contrast to the large amount of research on non-pharmacological interventions in other types of dementia (Brodaty & Arasaratnam, 2012; Livingston et al. 2014; Orgeta et al. 2015; Livingston & Cooper, 2017; Seeher & Brodaty, 2017). It is consistent, though, with what has been found in other systematic reviews on Lewy body dementia (Hindle et al. 2013; Stinton et al. 2015; Inskip et al. 2016). Despite the lack of research, however, non-pharmacological interventions are likely to be important in the management of Lewy body dementia. As already noted, pharmacological treatment of psychotic symptoms and movement disturbances in this condition is limited by the difficulties patients have tolerating first-line medications.

At the same time, there is evidence for the effectiveness of non-pharmacological interventions for similar symptoms in other conditions. In the case of psychosis, for example, multi-factorial interventions, including physical activity, occupational therapy, and music therapy, have some evidence of effectiveness in other types of dementia (Brodaty & Arasaratnam, 2012; Chen et al. 2014). In the case of motor disturbances, interventions such as exercise and gait training have been found to be effective in Parkinson's disease (Bloem et al. 2015). There is also strong evidence that non-pharmacological interventions are effective at ameliorating symptoms that are common across different dementias (Brodaty & Arasaratnam, 2012; Livingston et al. 2014; Orgeta et al. 2015; Seeher & Brodaty, 2017). Caregiver education, training, and support, for example, have been shown to reduce both carers’ distress and patients’ neuropsychiatric symptoms (Brodaty & Arasaratnam, 2012; Seeher & Brodaty, 2017). Likewise, psychological interventions, such as cognitive behavioural therapy, have been shown to reduce patients’ depression (Orgeta et al. 2015). Finally, organised activities, music therapy, and sensory stimulation have been shown to reduce patients’ agitation (Livingston et al. 2014). All of these interventions could be investigated more systematically in Lewy body dementia.

Altogether, the review highlights the clear and urgent need for research in this area. Possible barriers to this include challenges establishing the diagnosis and distinguishing it from other dementias (McKeith et al. 2005; Vann Jones & O'Brien, 2014); the limited research resources devoted to Lewy body dementia as opposed to other neurodegenerative conditions; and the general lack of funding for non-pharmacological interventions. Each of these, however, is not insurmountable. The use of multi-centre registries or networks of centres with expertise in Lewy body dementia, for example, could help to address the problem of recruitment. Given the prevalence of the disease, its disproportionately high social and economic burden (Murman et al. 2003; Boström et al. 2007; Vossius et al. 2014; Svendsboe et al. 2016), and the limited suitability of medications, future research into non-pharmacological interventions is important to improving management at both individual and population levels.

Acknowledgements

This review presents independent research from the DIAMOND-Lewy study funded by the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (DTC-RP-PG-0311-12001). The views expressed are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health.

Conflicts of interest

JOB has acted as a consultant or received grant income from GE Healthcare, Avid/Lilly, TauRx, Axon, and Axovant. HB has worked on drug trials for patients with Alzheimer's disease sponsored by major pharmaceutical companies including Eisai Pharmaceuticals, Eli Lilly and Company, GlaxoSmithKline, H Lundbeck A/S, Janssen-Cilag Pty Limited, Medivation Inc., Novartis Pharmaceuticals, Nutricia, Pfizer Inc., Prana Biotechnology Limited, Sanofi-Aventis, Voyager Pharmaceutical Corporation, and Wyeth Limited. HB has also been a consultant, advisory board member, and sponsored speaker for Baxter, H Lundbeck A/S, Janssen-Cilag Pty Limited, Medivation Inc., Novartis Pharmaceuticals, Pfizer Inc., Prana Biotechnology Limited, Voyager Pharmaceutical Corporation, and Wyeth Limited. J-PT has acted as a consultant and been paid speaker fees by GE Healthcare, Axovant, and Shire Pharmaceutical.

MHC, LQ, IM, LA, CB, and AT have no conflicts of interest to declare.

Author contributions

MHC conducted the search, reviewed papers for inclusion and quality, extracted data, and wrote the paper. LQ reviewed papers for inclusion and quality and extracted data. JTO supervised the project, which all authors were involved in conceptualising. All authors revised the manuscript for critically meaningful content and approved the final version.

References

Aarsland, D, Brønnick, K, Ehrt, U, De Deyn, PP, Tekin, S, Emre, M and Cummings, JL (2007). Neuropsychiatric symptoms in patients with Parkinson's disease and dementia: frequency, profile and associated care giver stress. Journal of Neurology, Neurosurgery & Psychiatry 78, 3642.
Aarsland, D, Londos, E and Ballard, C (2009). Parkinson's disease dementia and dementia with Lewy bodies: different aspects of one entity. International Psychogeriatrics 21, 216219.
Aarsland, D, Perry, R, Larsen, JP, McKeith, IG, O'Brien, JT, Perry, EK, Burn, D and Ballard, CG (2005). Neuroleptic sensitivity in Parkinson's disease and parkinsonian dementias. Journal of Clinical Psychiatry 66, 633637.
Armijo-Olivo, S, Stiles, CR, Hagen, NA, Biondo, PD and Cummings, GG (2012). Assessment of study quality for systematic reviews: a comparison of the Cochrane collaboration risk of bias tool and the effective public health practice project quality assessment tool: methodological research. Journal of Evaluation in Clinical Practice 18, 1218.
Ballard, C, Aarsland, D, Francis, P and Corbett, A (2013). Neuropsychiatric symptoms in patients with dementias associated with cortical Lewy bodies: pathophysiology, clinical features, and pharmacological management. Drugs & Aging 30, 603611.
Ballard, C, Holmes, C, McKeith, I, Neill, D, O'Brien, J, Cairns, N, Lantos, P, Perry, E, Ince, P and Perry, R (1999). Psychiatric morbidity in dementia with Lewy bodies: a prospective clinical and neuropathological comparative study with Alzheimer's disease. American Journal of Psychiatry 156, 10391045.
Barnikol, TT, Pawelczyk, NBA, Barnikol, UB, Kuhn, J, Lenartz, D, Sturm, V, Tass, PA and Freund, H-J (2010). Changes in apraxia after deep brain stimulation of the nucleus basalis Meynert in a patient with Parkinson dementia syndrome. Movement Disorders 25, 15191520.
Black, W and Almeida, OP (2004). A systematic review of the association between the behavioral and psychological symptoms of dementia and burden of care. International Psychogeriatrics 16, 295315.
Bloem, BR, de Vries, NM and Ebersbach, G (2015). Nonpharmacological treatments for patients with Parkinson's disease. Movement Disorders 30, 15041520.
Boström, F, Jönsson, L, Minthon, L and Londos, E (2007). Patients with Lewy body dementia use more resources than those with Alzheimer's disease. International Journal of Geriatric Psychiatry 22, 713719.
Brodaty, H and Arasaratnam, C (2012). Meta-analysis of nonpharmacological interventions for neuropsychiatric symptoms of dementia. American Journal of Psychiatry 169, 946953.
Brodaty, H, Connors, MH, Xu, J, Woodward, M and Ames, D (2014). Predictors of institutionalization in dementia: a three year longitudinal study. Journal of Alzheimer's Disease 40, 221226.
Brodaty, H, Connors, MH, Xu, J, Woodward, M and Ames, D (2015). The course of neuropsychiatric symptoms in dementia: a 3-year longitudinal study. Journal of the American Medical Directors Association 16, 380387.
Chen, R-C, Liu, C-L, Lin, M-H, Peng, L-N, Chen, L-Y, Liu, L-K and Chen, L-K (2014). Non-pharmacological treatment reducing not only behavioral symptoms, but also psychotic symptoms of older adults with dementia: a prospective cohort study in Taiwan. Geriatrics & Gerontology International 14, 440446.
Cheston, R, Thorne, K, Whitby, P, Peak, J (2007). Simulated presence therapy, attachment and separation amongst people with dementia. Dementia 6, 442449.
Ciro, CA, Hershey, LA and Garrison, D (2013). Enhanced task-oriented training in a person with dementia with Lewy bodies. American Journal of Occupational Therapy 67, 556563.
Connors, MH and Coltheart, M (2011). On the behaviour of senile dementia patients vis-à-vis the mirror: Ajuriaguerra, Strejilevitch and Tissot (1963). Neuropsychologia 49, 16791692.
Connors, MH, Langdon, R and Coltheart, M (2015). Misidentification delusions. In Bhugra, D, Malhi, GS (eds). Troublesome Disguises: Managing Challenging Disorders in Psychiatry, 2nd edn., Oxford, UK: John Wiley & Sons, pp. 169185.
Culo, S, Mulsant, BH, Rosen, J, Mazumdar, S, Blakesley, RE, Houck, PR and Pollock, BG (2010). Treating neuropsychiatric symptoms in dementia with Lewy bodies: a randomized controlled-trial. Alzheimer Disease & Associated Disorders 24, 360364.
Dawley, C (2015). The use of Parkinson's disease specific rehabilitative interventions to treat a patient with Lewy body dementia: a case report. Case Report Papers.
Effective Public Health Practice Project (2007). Effective Public Health Practice Project Quality Assessment Tool for Quantitative Studies. (http://www.ephpp.ca/tools.html). Accessed 1 October 2016.
Elder, GJ, Firbank, MJ, Kumar, H, Chatterjee, P, Chakraborty, T, Dutt, A and Taylor, JP (2016). Effects of transcranial direct current stimulation upon attention and visuoperceptual function in Lewy body dementia: a preliminary study. International Psychogeriatrics 28, 341347.
Freund, HJ, Kuhn, J, Lenartz, D, Mai, JK, Schnell, T, Klosterkoetter, J and Sturm, V (2009). Cognitive functions in a patient with Parkinson-Dementia syndrome undergoing deep brain stimulation. Archives of Neurology 66, 781785.
Fujiwara, H, Honda, M, Ito, K, Koyama, T (2004). Modified electroconvulsive therapy for BPSD in dementia with Lewy bodies. Seishin Igaku (Clinical Psychiatry) 46, 7779.
Gil-Ruiz, N, Osorio, RS, Cruz, I, Agüera-Ortiz, L, Olazarán, J, Sacks, H, Álvarez-Linera, J and Martínez-Martín, P (2013). An effective environmental intervention for management of the ‘mirror sign’ in a case of probable Lewy body dementia. Neurocase 19, 113.
Graff, MJL, Vernooij-Dassen, MJM, Zajec, J, Olde-Rikkert, MGM, Hoefnagels, WHL and Dekker, J (2006). How can occupational therapy improve the daily performance and communication of an older patient with dementia and his primary caregiver? Dementia 5, 503532.
Hindle, JV, Petrelli, A, Clare, L and Kalbe, E (2013). Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. Movement Disorders 28, 10341049.
Hsu, MH, Flowerdew, R, Parker, M, Fachner, J and Odell-Miller, H (2015). Individual music therapy for managing neuropsychiatric symptoms for people with dementia and their carers: a cluster randomised controlled feasibility study. BMC Geriatrics 15, 84.
Huh, TJ, Areán, PA, Bornfeld, Hand Elite-Marcandonatou, A (2008). The effectiveness of an environmental and behavioral approach to treating behavior problems in a patient with dementia with Lewy bodies. Annals of Long Term Care 16, 1721.
Inskip, M, Mavros, Y, Sachdev, PS and Fiatarone Singh, MA (2016). Exercise for individuals with Lewy body dementia: a systematic review. PLoS ONE 11, e0156520.
Kung, S and O'Connor, KM (2002). ECT in Lewy body dementia: a case report. Primary Care Companion to the Journal of Clinical Psychiatry 4, 162.
Livingston, G and Cooper, C (2017). Psychological, behavioural and psychosocial interventions for neuropsychiatric symptoms in dementia: what works, what does not and what needs more evidence. In Ames, D, O'Brien, JT, Burns, A (eds). Dementia, 5th edn. Boca Raton, Florida, USA: CRC Press, pp. 235243.
Livingston, G, Kelly, L, Lewis-Holmes, E, Baio, G, Morris, S, Patel, N, Omar, RZ, Katona, C and Cooper, C (2014). Non-pharmacological interventions for agitation in dementia: systematic review of randomised controlled trials. British Journal of Psychiatry 205, 436.
Logemann, JA, Gensler, G, Robbins, J, Lindblad, AS, Brandt, D, Hind, JA, Kosek, S, Dikeman, K, Kazandjian, M, Gramigna, GD, Lundy, D, McGarvey-Toler, S and Gardner, PJ (2008). A randomized study of three interventions for aspiration of thin liquids in patients with dementia or Parkinson's disease. Journal of Speech, Language, and Hearing Research 51, 173183.
Loher, TJ, Krauss, JK, Wielepp, JP, Weber, S and Burgunder, JM (2002). Pallidal deep brain stimulation in a parkinsonian patient with late-life dementia: sustained benefit in motor symptoms but not in functional disability. European Neurology 47, 122123.
McKeith, I (2009). Commentary: DLB and PDD: the same or different? Is there a debate? International Psychogeriatrics 21, 220224.
McKeith, I, Fairbairn, A, Perry, R, Thompson, P and Perry, E (1992). Neuroleptic sensitivity in patients with senile dementia of Lewy body type. BMJ 305, 673678.
McKeith, IG, Dickson, DW, Lowe, J, Emre, M, O'Brien, JT, Feldman, H, Cummings, J, Duda, JE, Lippa, C, Perry, EK, Aarsland, D, Arai, H, Ballard, CG, Boeve, B, Burn, DJ, Costa, D, Del Ser, T, Dubois, B, Galasko, D, Gauthier, S, Goetz, CG, Gomez-Tortosa, E, Halliday, G, Hansen, LA, Hardy, J, Iwatsubo, T, Kalaria, RN, Kaufer, D, Kenny, RA, Korczyn, A, Kosaka, K, Lee, VMY, Lees, A, Litvan, I, Londos, E, Lopez, OL, Minoshima, S, Mizuno, Y, Molina, JA, Mukaetova-Ladinska, EB, Pasquier, F, Perry, RH, Schulz, JB, Trojanowski, JQ, Yamada, M and Consortium on DLB (2005). Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65, 18631872.
Murman, DL, Kuo, SB, Powell, MC and Colenda, CC (2003). The impact of parkinsonism on costs of care in patients with AD and dementia with Lewy bodies. Neurology 61, 944949.
National Institute for Health and Care Excellence (NICE) (2016). Appendix G Methodology Checklist: Qualitative Studies. The social care guidance manual. NICE (https://www.nice.org.uk/process/pmg10/). Accessed 1 October 2016.
Oesterhus, R, Soennesyn, H, Rongve, A, Ballard, C, Aarsland, D and Vossius, C (2014). Long-term mortality in a cohort of home-dwelling elderly with mild Alzheimer's disease and Lewy body dementia. Dementia and Geriatric Cognitive Disorders 38, 161169.
Orgeta, V, Qazi, A, Spector, A and Orrell, M (2015). Psychological treatments for depression and anxiety in dementia and mild cognitive impairment: systematic review and meta-analysis. British Journal of Psychiatry 207, 293.
Ota, K, Iseki, E, Murayama, N, Fujishiro, H, Arai, H and Sato, K (2012). Effect of psychological intervention for visual hallucinations in patients with dementia with Lewy bodies. Asia-Pacific Psychiatry 4, 154155.
Rasmussen, KG Jr., Russell, JC, Kung, S, Rummans, TA, Rae-Stuart, E and Kevin O'Connor, M (2003). Electroconvulsive therapy for patients with major depression and probable Lewy body dementia. Journal of ECT 19, 103109.
Ricciardi, L, Piano, C, Bentivoglio, AR and Fasano, A (2015). Pedunculopontine nucleus stimulation in Parkinson's disease dementia. Biological Psychiatry 77, e35e40.
Rochester, L, Burn, DJ, Woods, G, Godwin, J and Nieuwboer, A (2009). Does auditory rhythmical cueing improve gait in people with Parkinson's disease and cognitive impairment? A feasibility study. Movement Disorders 24, 839845.
Rongve, A, Soennesyn, H, Skogseth, R, Oesterhus, R, Hortobágyi, T, Ballard, C, Auestad, BH and Aarsland, D (2016). Cognitive decline in dementia with Lewy bodies: a 5-year prospective cohort study. BMJ Open 6, 17.
Seeher, K and Brodaty, H (2017). Family carers of people with dementia. In: Ames, D, O'Brien, JT, Burns, A (eds). Dementia, 5th edn. Boca Raton, Florida, USA: CRC Press, pp. 142160.
Stinton, C, McKeith, I, Taylor, J-P, Lafortune, L, Mioshi, E, Mak, E, Cambridge, V, Mason, J, Thomas, A and O'Brien, JT (2015). Pharmacological management of Lewy body dementia: a systematic review and meta-analysis. American Journal of Psychiatry 172, 731742.
Svendsboe, E, Terum, T, Testad, I, Aarsland, D, Ulstein, I, Corbett, A and Rongve, A (2016). Caregiver burden in family carers of people with dementia with Lewy bodies and Alzheimer's disease. International Journal of Geriatric Psychiatry 31, 10751083.
Tabak, R, Aquije, G and Fisher, BE (2013). Aerobic exercise to improve executive function in Parkinson disease: a case series. Journal of Neurologic Physical Therapy 37, 5864.
Takahashi, S, Mizukami, K, Yasuno, F and Asada, T (2009). Depression associated with dementia with Lewy bodies (DLB) and the effect of somatotherapy. Psychogeriatrics 9, 5661.
Telenius, EW, Engedal, K and Bergland, A (2015). Effect of a high-intensity exercise program on physical function and mental health in nursing home residents with dementia: an assessor blinded randomized controlled trial. PLoS ONE 10, e0126102.
Vann Jones, SA and O'Brien, JT (2014). The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychological Medicine 44, 673683.
Vossius, C, Rongve, A, Testad, I, Wimo, A and Aarsland, D (2014). The use and costs of formal care in newly diagnosed dementia: a three-year prospective follow-up study. American Journal of Geriatric Psychiatry 22, 381388.
Walker, Z, Possin, KL, Boeve, BF and Aarsland, D (2015). Lewy body dementias. The Lancet 386, 16831697.
Yamaguchi, Y, Matsuoka, K, Ueda, J, Takada, R, Takahashi, M, Kiuchi, K, Hashimoto, K, Kosaka, J, Yasuno, F and Kishimoto, T (2016). The effect of electroconvulsive therapy on psychiatric symptoms of dementia with Lewy bodies. Journal of Neuropsychiatry and Clinical Neurosciences 28, e66.