Skip to main content Accessibility help

The utility of an RDoC motor domain to understand psychomotor symptoms in depression

  • S. Walther (a1), J.A. Bernard (a2), V. A. Mittal (a3) and S.A. Shankman (a4)


Despite the clinical impact of motor symptoms such as agitation or retardation on the course of depression, these symptoms are poorly understood. Novel developments in the field of instrumentation and mobile devices allow for dimensional and continuous recording of motor behavior in various settings, particularly outside the laboratory. Likewise, the use of novel assessments enables to combine multimodal neuroimaging with behavioral measures in order to investigate the neural correlates of motor dysfunction in depression. The research domain criteria (RDoC) framework will soon include a motor domain that will provide a framework for studying motor dysfunction in mood disorders. In addition, new studies within this framework will allow investigators to study motor symptoms across different stages of depression as well as other psychiatric diagnoses. Finally, the introduction of the RDoC motor domain will help test how motor symptoms integrate with the original five RDoC domains (negative valence, positive valence, cognitive, social processes, and arousal/regulation).


Corresponding author

Author for correspondence: Dr Sebastian Walther, E-mail:


Hide All
American Psychiatric Association (APA) (2013) Diagnostic and Statistical Manual of Mental Disorders: DSM-5. Arlington, VA: American Psychiatric Association.
Aron, AR and Poldrack, RA (2006) Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. Journal of Neuroscience 26, 24242433.
Asgari, M and Shafran, I (2010) Predicting severity of Parkinson's disease from speech. Conference proceedings: 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2010, 52015204.
Bernard, JA and Mittal, VA (2015) Updating the research domain criteria: the utility of a motor dimension. Psychological Medicine 45, 26852689.
Bernard, JA, Dean, DJ, Kent, JS, Orr, JM, Pelletier-Baldelli, A, Lunsford-Avery, JR, Gupta, T and Mittal, VA (2014) Cerebellar networks in individuals at ultra high-risk of psychosis: impact on postural sway and symptom severity. Human Brain Mapping 35, 40644078.
Bernard, JA, Orr, JM and Mittal, VA (2016) Differential motor and prefrontal cerebello-cortical network development: evidence from multimodal neuroimaging. Neuroimage 124, 591601.
Bewernick, BH, Urbach, AS, Broder, A, Kayser, S and Schlaepfer, TE (2017) Walking away from depression-motor activity increases ratings of mood and incentive drive in patients with major depression. Psychiatry Research 247, 6872.
Bostan, AC, Dum, RP and Strick, PL (2010) The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America 107, 84528456.
Bracht, T, Federspiel, A, Schnell, S, Horn, H, Hofle, O, Wiest, R, Dierks, T, Strik, W, Muller, TJ and Walther, S (2012) Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder. PLoS One 7, e52238.
Bracht, T, Schnell, S, Federspiel, A, Razavi, N, Horn, H, Strik, W, Wiest, R, Dierks, T, Muller, TJ and Walther, S (2013) Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia. Schizophrenia Research 143, 269276.
Caligiuri, MP and Ellwanger, J (2000) Motor and cognitive aspects of motor retardation in depression. Journal of Affective Disorders 57, 8393.
Cantisani, A, Stegmayer, K, Bracht, T, Federspiel, A, Wiest, R, Horn, H, Muller, TJ, Schneider, C, Hofle, O, Strik, W and Walther, S (2016) Distinct resting-state perfusion patterns underlie psychomotor retardation in unipolar vs. bipolar depression. Acta Psychiatrica Scandinavica 134, 329338.
Cheniaux, E, Silva, RAD, Santana, CM and Filgueiras, A (2018) Changes in energy and motor activity: core symptoms of bipolar mania and depression? Revista Brasileira de Psiquiatria 40, 233237.
Chouinard, PA and Paus, T (2006) The primary motor and premotor areas of the human cerebral cortex. Neuroscientist 12, 143152.
Cortese, L, Caligiuri, MP, Malla, AK, Manchanda, R, Takhar, J and Haricharan, R (2005) Relationship of neuromotor disturbances to psychosis symptoms in first-episode neuroleptic-naive schizophrenia patients. Schizophrenia Research 75, 6575.
Dean, DJ, Walther, S, Bernard, JA and Mittal, VA (2018) Motor clusters reveal differences in risk for psychosis, cognitive functioning, and thalamocortical connectivity: evidence for vulnerability subtypes. Clinical Psychological Science 6, 721734.
DeLong, M and Wichmann, T (2009) Update on models of basal ganglia function and dysfunction. Parkinsonism and Related Disorders 15(Suppl. 3), S237S240.
Dutschke, LL, Stegmayer, K, Ramseyer, F, Bohlhalter, S, Vanbellingen, T, Strik, W and Walther, S (2018) Gesture impairments in schizophrenia are linked to increased movement and prolonged motor planning and execution. Schizophrenia Research 200, 4249.
Garvey, MA and Cuthbert, BN (2017) Developing a motor systems domain for the NIMH RDoC program. Schizophrenia Bulletin 43, 935936.
Jansiewicz, EM, Goldberg, MC, Newschaffer, CJ, Denckla, MB, Landa, R and Mostofsky, SH (2006) Motor signs distinguish children with high functioning autism and Asperger's syndrome from controls. Journal of Autism and Devopmental Disorders 36, 613621.
Kendler, KS (2016) Phenomenology of schizophrenia and the representativeness of modern diagnostic criteria. JAMA Psychiatry 73, 10821092.
Lang, PJ, McTeague, LM and Bradley, MM (2016) RDoc, DSM, and the reflex physiology of fear: a biodimensional analysis of the anxiety disorders spectrum. Psychophysiology 53, 336347.
Leonpacher, AK, Liebers, D, Pirooznia, M, Jancic, D, MacKinnon, DF, Mondimore, FM, Schweizer, B, Potash, JB, Zandi, PP, Consortium NGIBD and Goes, FS (2015) Distinguishing bipolar from unipolar depression: the importance of clinical symptoms and illness features. Psychological Medicine 45, 24372446.
McTeague, LM, Huemer, J, Carreon, DM, Jiang, Y, Eickhoff, SB and Etkin, A (2017) Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. American Journal of Psychiatry 174, 676685.
Mittal, VA and Wakschlag, LS (2017) Research domain criteria (RDoC) grows up: strengthening neurodevelopment investigation within the RDoC framework. Journal of Affective Disorders 216, 3035.
Mittal, VA and Walker, EF (2007) Movement abnormalities predict conversion to Axis I psychosis among prodromal adolescents. Journal of Abnormal Psychology 116, 796803.
Mittal, VA, Orr, JM, Turner, JA, Pelletier, AL, Dean, DJ, Lunsford-Avery, J and Gupta, T (2013) Striatal abnormalities and spontaneous dyskinesias in non-clinical psychosis. Schizophrenia Research 151, 141147.
Mittal, VA, Bernard, JA and Northoff, G (2017) What can different motor circuits tell us about psychosis? An RDoC perspective. Schizophrenia Bulletin 43, 949955.
Novick, JS, Stewart, JW, Wisniewski, SR, Cook, IA, Manev, R, Nierenberg, AA, Rosenbaum, JF, Shores-Wilson, K, Balasubramani, GK, Biggs, MM, Zisook, S and Rush, AJ, investigators SD (2005) Clinical and demographic features of atypical depression in outpatients with major depressive disorder: preliminary findings from STAR*D. Journal of Clinical Psychiatry 66, 10021011.
Obeso, JA, Rodriguez-Oroz, MC, Stamelou, M, Bhatia, KP and Burn, DJ (2014) The expanding universe of disorders of the basal ganglia. Lancet 384, 523531.
Owoeye, O, Kingston, T, Scully, PJ, Baldwin, P, Browne, D, Kinsella, A, Russell, V, O'Callaghan, E and Waddington, JL (2013) Epidemiological and clinical characterization following a first psychotic episode in major depressive disorder: comparisons with schizophrenia and bipolar I disorder in the Cavan-Monaghan First Episode Psychosis Study (CAMFEPS). Schizophrenia Bulletin 39, 756765.
Parker, G (2000) Classifying depression: should paradigms lost be regained? American Journal of Psychiatry 157, 11951203.
Peralta, V and Cuesta, MJ (2017) Motor abnormalities: from neurodevelopmental to neurodegenerative through “functional” (neuro)psychiatric disorders. Schizophrenia Bulletin 43, 956971.
Picard, N and Strick, PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cerebral Cortex 6, 342353.
Pier, MP, Hulstijn, W and Sabbe, BG (2004) Differential patterns of psychomotor functioning in unmedicated melancholic and nonmelancholic depressed patients. Journal of Psychiatric Research 38, 425435.
Razavi, N, Horn, H, Koschorke, P, Hugli, S, Hofle, O, Muller, T, Strik, W and Walther, S (2011) Measuring motor activity in major depression: the association between the Hamilton Depression Rating Scale and actigraphy. Psychiatry Research 190, 212216.
Sabbe, B, Hulstijn, W, Van Hoof, J and Zitman, F (1996 a) Fine motor retardation and depression. Journal of Psychiatric Research 30, 295306.
Sabbe, B, van Hoof, J, Hulstijn, W and Zitman, F (1996 b) Changes in fine motor retardation in depressed patients treated with fluoxetine. Journal of Affective Disorders 40, 149157.
Sabbe, B, Hulstijn, W, van Hoof, J, Tuynman-Qua, HG and Zitman, F (1999) Retardation in depression: assessment by means of simple motor tasks. Journal of Affective Disorders 55, 3944.
Sagheer, TA, Assaad, S, Haddad, G, Hachem, D, Haddad, C and Hallit, S (2018) Neurological soft signs in bipolar and unipolar disorder: a case-control study. Psychiatry Research 261, 253258.
Sakurai, H, Suzuki, T, Yoshimura, K, Mimura, M and Uchida, H (2017) Predicting relapse with individual residual symptoms in major depressive disorder: a reanalysis of the STAR*D data. Psychopharmacology 234, 24532461.
Scarmeas, N, Hadjigeorgiou, GM, Papadimitriou, A, Dubois, B, Sarazin, M, Brandt, J, Albert, M, Marder, K, Bell, K, Honig, LS, Wegesin, D and Stern, Y (2004) Motor signs during the course of Alzheimer disease. Neurology 63, 975982.
Schrijvers, D, Maas, YJ, Pier, MP, Madani, Y, Hulstijn, W and Sabbe, BG (2009) Psychomotor changes in major depressive disorder during sertraline treatment. Neuropsychobiology 59, 3442.
Sobin, C and Sackeim, HA (1997) Psychomotor symptoms of depression. American Journal of Psychiatry 154, 417.
Stange, JP, Zulueta, J, Langenecker, SA, Ryan, KA, Piscitello, A, Duffecy, J, McInnis, MG, Nelson, P, Ajilore, O and Leow, A (2018) Let your fingers do the talking: passive typing instability predicts future mood outcomes. Bipolar Disorders 20, 285288.
Stuivenga, M and Morrens, M (2014) Prevalence of the catatonic syndrome in an acute inpatient sample. Frontiers in Psychiatry 5, 174.
Ulbricht, CM, Dumenci, L, Rothschild, AJ and Lapane, KL (2016) Changes in depression subtypes for women during treatment with citalopram: a latent transition analysis. Archives of Womens Mental Health 19, 769778.
Ulbricht, CM, Dumenci, L, Rothschild, AJ and Lapane, KL (2018) Changes in depression subtypes among men in STAR*D: a latent transition analysis. American Journal of Mens Health 12, 513.
van Diermen, L, Walther, S, Cools, O, Fransen, E, Birkenhager, TK, Sabbe, BCG and Schrijvers, D (2018) Observer-rated retardation but not agitation corresponds to objective motor measures in depression. Acta Neuropsychiatrica, 16. Published online 30 July 2018
van Harten, PN, Walther, S, Kent, JS, Sponheim, SR and Mittal, VA (2017) The clinical and prognostic value of motor abnormalities in psychosis, and the importance of instrumental assessment. Neuroscience and Biobehavioral Reviews 80, 476487.
Walther, S (2015) Psychomotor symptoms of schizophrenia map on the cerebral motor circuit. Psychiatry Research 233, 293298.
Walther, S and Mittal, VA (2017) Motor system pathology in psychosis. Current Psychiatry Reports 19, 97.
Walther, S, Hofle, O, Federspiel, A, Horn, H, Hugli, S, Wiest, R, Strik, W and Muller, TJ (2012 a) Neural correlates of disbalanced motor control in major depression. Journal of Affective Disorders 136, 124133.
Walther, S, Hugli, S, Hofle, O, Federspiel, A, Horn, H, Bracht, T, Wiest, R, Strik, W and Muller, TJ (2012 b) Frontal white matter integrity is related to psychomotor retardation in major depression. Neurobiology of Disease 47, 1319.
Walther, S, Ramseyer, F, Horn, H, Strik, W and Tschacher, W (2014) Less structured movement patterns predict severity of positive syndrome, excitement, and disorganization. Schizophrenia Bulletin 40, 585591.
Walther, S, Stegmayer, K, Federspiel, A, Bohlhalter, S, Wiest, R and Viher, PV (2017) Aberrant hyperconnectivity in the motor system at rest is linked to motor abnormalities in schizophrenia spectrum disorders. Schizophrenia Bulletin 43, 982992.
Willems, AE, Sommer, IE, Tenback, DE, Koning, JP and van Harten, PN (2016) Instrumental measurements of spontaneous dyskinesia and schizotypy in subjects with auditory verbal hallucinations and healthy controls. Psychiatry Research 244, 2427.
Wilson, JE, Niu, K, Nicolson, SE, Levine, SZ and Heckers, S (2015) The diagnostic criteria and structure of catatonia. Schizophrenia Research 164, 256262.
Yin, Y, Wang, M, Wang, Z, Xie, C, Zhang, H, Zhang, H, Zhang, Z and Yuan, Y (2018) Decreased cerebral blood flow in the primary motor cortex in major depressive disorder with psychomotor retardation. Progress in Neuropsychopharmacology and Biological Psychiatry 81, 438444.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed