Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-dkqnh Total loading time: 0.276 Render date: 2021-10-17T06:32:54.484Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A culture-sensitive quantitative food frequency questionnaire used in an African population: 2. Relative validation by 7-day weighed records and biomarkers

Published online by Cambridge University Press:  02 January 2007

UE MacIntyre*
Affiliation:
Department of Paediatrics and Child Health, PO Box 168, Medical University of Southern Africa, 0204, South Africa
CS Venter
Affiliation:
Department of Nutrition and Family Ecology, Potchefstroom University for Christian Higher Education, Potchefstroom, South Africa
HH Vorster
Affiliation:
Department of Nutrition and Family Ecology, Potchefstroom University for Christian Higher Education, Potchefstroom, South Africa
*
*Corresponding author: Email paeds@iweb.co.za
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To determine the relative validity of the culture-sensitive quantitative food frequency questionnaire (QFFQ) developed for the Transition, Health and Urbanisation in South Africa (THUSA) study by 7-day weighed food records, urinary nitrogen excretion and basal metabolic rate (BMR).

Design:

A cross-sectional study.

Setting:

A community-based study in a population stratified according to level of urbanization.

Subjects:

Residents of the North West Province, South Africa, aged between 15 and 65 years. The weighed food record study comprised 74 participants while 104 participants collected 24-hour urine samples.

Methods:

All participants were interviewed using the QFFQ. For the weighed food record study, participants kept detailed weighed food diaries for seven consecutive days. For the urinary nitrogen study, participants made one 24-hour urine collection. Completeness of the urine collections was checked against 240 mg para-aminobenzoic acid. BMR was estimated by the Schofield equations.

Results:

Spearman rank correlation coefficients between the QFFQ and weighed food record ranged between 0.14 (fibre) and 0.59 (vitamin C). The QFFQ tended to underestimate intakes compared with the weighed records. Quintile distributions were similar for both methods. The correlation between urinary nitrogen excretion and dietary intake was poor. Possible underreporting was identified for 43% of the participants with the QFFQ and 28% with the weighed food record.

Conclusions:

The QFFQ appeared to be a relatively valid instrument for the assessment of dietary intakes of the population of the North West Province. The use of biomarkers in this population was difficult and needs further investigation.

Type
Research Article
Copyright
Copyright © CABI Publishing 2001

References

1Popkin, BM. The nutrition transition in low income countries: an emerging crisis. Nutr. Rev. 1994; 52: 285–9.CrossRefGoogle Scholar
2Drewnowski, A, Popkin, BM. The nutrition transition: trends in the global diet. Nutr. Rev. 1997; 55: 3143.CrossRefGoogle ScholarPubMed
3Willett, W. Nutritional Epidemiology. Monographs in Epidemiology and Biostatistics No. 15. Oxford: Oxford University Press, 1990.Google Scholar
4Bingham, SA. Validation of dietary assessment through biomarkers. In: Kok, FJ, van't Veer, P, eds. Biomarkers of Dietary Exposure. Proceedings of the 3rd Meeting on Nutritional Epidemiology. London: Smith-Gordon, 1991: 4152.Google Scholar
5Grant, KI, Langenhoven, ML, Stockton, MA, Day, RS, Bauermeister, P. FoodFinder dietary analysis software. Release 1.10. Parowvallei: Medical Research Council, 1992.Google Scholar
6Bland, JM, Altman, DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; i: 307–11.CrossRefGoogle Scholar
7Bingham, S, Cummings, JH. The use of 4-aminobenzoic acid as a marker to validate the completeness of 24h urine collections in man. Clin. Sci. 1983; 64: 629–35.CrossRefGoogle Scholar
8Maroni, BJ, Steinman, TI, Mitch, WE. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985; 27: 5865.CrossRefGoogle ScholarPubMed
9Schofield, WN. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985; 39C (Suppl.): 541.Google Scholar
10Männistö, S, Virtanen, M, Mikkonen, T, Pietinen, P. Reproducibility and validity of a food frequency questionnaire in a case–control study on breast cancer. J. Clin. Epidemiol. 1996; 49: 401–9.CrossRefGoogle Scholar
11Coates, RJ, Monteilh, CP. Assessment of food-frequency questionnaires in minority populations. Am. J. Clin. Nutr. 1997; 65 (Suppl.): S1108–15.CrossRefGoogle ScholarPubMed
12Lindroos, A-K, Lissner, L, Sjostrom, L. Validity and reproducibility of a self administered dietary questionnaire in obese and non-obese subjects. Eur. J. Clin. Nutr. 1993; 47: 461–81.Google ScholarPubMed
13Goldbohm, RA, van den Brandt, PA, Brants, HAM, van't Veer, PALM, Sturmans, F, Hermus, RJJ. Validation of a dietary questionnaire used in a large-scale prospective cohort study on diet and cancer. Eur. J. Clin. Nutr. 1994; 48: 253–65.Google Scholar
14Thompson, RL, Margetts, BM. Comparison of a food frequency questionnaire with a 10-day weighed record in cigarette smokers. Int. J. Epidemiol. 1993; 22: 824–33.CrossRefGoogle ScholarPubMed
15Bingham, SA, Gill, C, Welch, A, et al. Comparison of dietary assessment methods in nutritional epidemiology: weighed records v 24-h recalls, food-frequency questionnaires and estimated-diet records. Br. J. Nutr. 1994; 72: 619–43.CrossRefGoogle ScholarPubMed
16Bonifacj, C, Gerber, M, Scali, J, Daures, JP. Comparison of dietary assessment methods in a southern French population: use of weighed records, estimated-diet records and a food-frequency questionnaire. Eur. J. Clin. Nutr. 1997; 51: 217–31.CrossRefGoogle Scholar
17Rimm, EB, Giovanucci, EL, Stampfer, MJ, Colditz, GA, Litin, LB, Willett, WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am. J. Epidemiol. 1992; 135: 1114–26.CrossRefGoogle ScholarPubMed
18Larkin, FA, Metzner, HL, Thompson, FE, Flegal, KM, Guitr, KE. Comparison of estimated nutrient intakes by food frequency and dietary records in adults. J. Am. Diet. Assoc. 1989; 89: 215–23.Google ScholarPubMed
19Block, GB, Woods, M, Potosky, A, Clifford, C. Validation of a self-administered diet history questionnaire using multiple diet records. J. Clin. Epidemiol. 1990; 43: 1327–35.CrossRefGoogle ScholarPubMed
20Hankin, JH, Wilkens, LR, Kolonel, LN, Yoshizawa, CN. Validation of a quantitative dietary history method in Hawaii. Am. J. Epidemiol. 1991; 133: 616–28.CrossRefGoogle ScholarPubMed
21Margetts, BM, Cade, JE, Osmond, C. Comparison of a food frequency questionnaire with a diet record. Int. J. Epidemiol. 1989; 18: 868–73.CrossRefGoogle ScholarPubMed
22Romieu, I, Meir, J, Stampfer, J, et al. Food predictors of beta-carotene and alpha-tocopherol: validation of a food frequency questionnaire. Am. J. Epidemiol. 1990; 131: 864–76.CrossRefGoogle ScholarPubMed
23Kune, S, Kune, GA, Watson, LF. Observations on the reliability and validity of the design and diet history method in the Melbourne colorectal cancer study. Nutr. Cancer 1987; 9: 520.CrossRefGoogle ScholarPubMed
24O'Donnell, MG, Nelson, M, Wise, PH, Walker, DM. A computerized questionnaire for use in diet health education. 1. Development and validation. Br. J. Nutr. 1991; 66: 315.CrossRefGoogle ScholarPubMed
25Willett, WC, Sampson, L, Stampfer, MJ, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985; 12: 5165.CrossRefGoogle Scholar
26Salvini, S, Hunter, DJ, Sampson, L, et al. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int. J. Epidemiol. 1989; 18: 858–67.CrossRefGoogle ScholarPubMed
27Hartman, AM, Brown, CC, Palmgren, J, et al. Variability in nutrient and food intakes among older middle aged men. Implications for design of epidemiologic and validation studies using food recording. Am. J. Epidemiol. 1990; 132: 9991012.CrossRefGoogle ScholarPubMed
28Black, AE, Jebb, SA, Bingham, SA, Runswick, SA, Poppitt, SD. The validation of energy and protein intakes by doubly labelled water and 24-hour urinary nitrogen excretion in post-obese subjects. J. Hum. Nutr. Diet. 1995; 8: 5164.CrossRefGoogle Scholar
29Bingham, SA, Cassidy, A, Cole, TJ, et al. Validation of weighed records and other methods of dietary assessment using the 24 h urine nitrogen technique and other biological markers. Br. J. Nutr. 1995; 73: 531–50.CrossRefGoogle ScholarPubMed
30Price, GM, Paul, AA, Cole, TJ, Wadsworth, EJ. Characteristics of the low-energy reporters in a longitudinal national dietary survey. Br. J. Nutr. 1997; 77: 833–51.CrossRefGoogle Scholar
31Cole, TJ, Black, AE, Coward, WA, Prentice, AM. Total energy expenditure and basal metabolic rate. Am. J. Clin. Nutr. 1996; 63: 281–2.CrossRefGoogle ScholarPubMed
32Wheeler, C, Rutishauser, L, Conn, J, O'Dea, K. Reproducibility of a meal-based food frequency questionnaire. The influence of format and time interval between questionnaires. Eur. J. Clin. Nutr. 1994; 48: 795809.Google ScholarPubMed
33Hayter, JE, Henry, CJK. A re-examination of basal metabolic rate predictive equations: the importance of geographic origin of subjects in sample selection. Eur. J. Clin. Nutr. 1994; 48: 702–7.Google ScholarPubMed
34Shetty, PS, Henry, CJK, Black, AE, Prentice, AM. Energy requirements of adults: an update on basal metabolic rates (BMRs) and physical activity levels (PALs). Eur. J. Clin. Nutr. 1996; 50 (Suppl.): S11–23.Google Scholar
35Charlton, K, Wolmarans, P, Kruger, M, Labadarios, DL, Aronson, I, Lombard, CJ. Micronutrient status of older South Africans. S. Afr. Med. J. 1998; 88: 653–8.Google Scholar
36Goldberg, GR, Black, AE, Jebb, SA, et al. Critical evaluation of energy intake data using fundamental principles of energy physiology: I. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991; 45: 569–81.Google ScholarPubMed
37Garrow, JS. Validation of methods for estimating habitual diet: proposed guidelines. Eur. J. Clin. Nutr. 1995; 49: 231–2.Google ScholarPubMed
38Southgate, DAT. On the quality of nutritional data. Br. J. Nutr. 1995; 73: 335–6.CrossRefGoogle Scholar
You have Access
71
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A culture-sensitive quantitative food frequency questionnaire used in an African population: 2. Relative validation by 7-day weighed records and biomarkers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A culture-sensitive quantitative food frequency questionnaire used in an African population: 2. Relative validation by 7-day weighed records and biomarkers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A culture-sensitive quantitative food frequency questionnaire used in an African population: 2. Relative validation by 7-day weighed records and biomarkers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *