Skip to main content
×
×
Home

Do low-carbon-emission diets lead to higher nutritional quality and positive health outcomes? A systematic review of the literature

  • Charlotte LR Payne (a1), Peter Scarborough (a1) and Linda Cobiac (a1)
Abstract
Objective

To evaluate what is known about the relative health impacts, in terms of nutrient intake and health outcomes, of diets with reduced greenhouse gas emissions (GHGE).

Design

We systematically reviewed the results of published studies that link GHGE of dietary patterns to nutritional content or associated consequences for health.

Setting

We included studies published in English in peer-reviewed journals that included data on actual and modelled diets and enabled a matched comparison of GHGE with nutrient composition and/or health outcomes.

Subjects

Studies included used data from subjects from the general population, who had taken part in dietary surveys or prospective cohort studies.

Results

We identified sixteen eligible studies, with data on 100 dietary patterns. We present the results as dietary links between GHGE reduction and impact on nutrients to limit (n 151), micronutrient content (n 158) and health outcomes (n 25). The results were highly heterogeneous. Across all measures of ‘healthiness’, 64 % (n 214) of dietary links show that reduced GHGE from diets were associated with worse health indicators. However, some trends emerged. In particular, reduced saturated fat and salt are often associated with reduced GHGE in diets that are low in animal products (57/84). Yet these diets are also often high in sugar (38/55) and low in essential micronutrients (129/158).

Conclusions

Dietary scenarios that have lower GHGE compared with average consumption patterns may not result in improvements in nutritional quality or health outcomes. Dietary recommendations for reduced GHGE must also address sugar consumption and micronutrient intake.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Do low-carbon-emission diets lead to higher nutritional quality and positive health outcomes? A systematic review of the literature
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Do low-carbon-emission diets lead to higher nutritional quality and positive health outcomes? A systematic review of the literature
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Do low-carbon-emission diets lead to higher nutritional quality and positive health outcomes? A systematic review of the literature
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Email charlotte.payne@gmail.com
References
Hide All
1. Krueger, J, Biedrzycki, P & Hoverter, SP (2015) Human health impacts of climate change: implications for the practice and law of public health. J Law Med Ethics 43, 7982.
2. Solomon, S, Plattner, GK, Knutti, R et al. (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 106, 17041709.
3. Garnett, T (2011) Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36, Suppl. 1, S23S32.
4. Godfray, HCJ, Beddington, JR, Crute, IR et al. (2010) Food security: the challenge of feeding 9 billion people. Science 327, 812818.
5. Rayner, M (2014) Front-of-pack and point-of-purchase labelling schemes designed for obesity prevention. In Managing and Preventing Obesity: Behavioural Factors and Dietary Interventions, pp. 325334 [T Gill, editor]. Cambridge: Woodhead Publishing.
6. Vallgårda, S, Holm, L & Jensen, JD (2014) The Danish tax on saturated fat: why it did not survive. Eur J Clin Nutr 69, 223226.
7. Scarborough, P, Payne, C, Agu, CG et al. (2013) How important is the choice of the nutrient profile model used to regulate broadcast advertising of foods to children? A comparison using a targeted data set. Eur J Clin Nutr 67, 815820.
8. Wyness, LA, Butriss, JL & Stanner, SA (2012) Reducing the population’s sodium intake: the UK Food Standards Agency’s salt reduction programme. Public Health Nutr 15, 254261.
9. Jeffries, E (2015) Changing course. Nature Clim Change 5, 405407.
10. Green, R, Milner, J, Dangour, AD et al. (2015) The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change. Clim Change 129, 253265.
11. Joyce, A, Hallett, J, Hannelly, T et al. (2014) The impact of nutritional choices on global warming and policy implications: examining the link between dietary choices and greenhouse gas emissions. Clin Ophthalmol 8, 25012506.
12. Hallström, E, Carlsson-Kanyama, A & Börjesson, P (2014) Environmental impact of dietary change: a systematic review. J Cleaner Prod 19, 111.
13. Auestad, N & Fulgoni, VL (2015) What current literature tells us about sustainable diets: emerging research linking dietary patterns, environmental sustainability, and economics. Adv Nutr 6, 1936.
14. World Health Organization (2015) Healthy Diets. Fact Sheet No. 394. Geneva: WHO; available at http://www.who.int/mediacentre/factsheets/fs394/en/
15. Caro, D, Davis, SJ, Bastianoni, S et al. (2014) Global and regional trends in greenhouse gas emissions from livestock. Clim Change 126, 203216.
16. Millward, JD & Garnett, T (2010) Food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods. Proc Nutr Soc 69, 103118.
17. Whiting, PF, Rutjes, AW, Westwood, ME et al. (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155, 529536.
18. Biesbroek, S, Bueno-de-Mesquita, HB, Peeters, PH et al. (2014) Reducing our environmental footprint and improving our health: greenhouse gas emission and land use of usual diet and mortality in EPIC-NL: a prospective cohort study. Environ Health 13, 27.
19. Scarborough, P, Appleby, PN, Mizdrak, A et al. (2014) Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim Change 125, 179192.
20. Soret, S, Mejia, A, Batech, M et al. (2014) Climate change mitigation and health effects of varied dietary patterns in real-life settings throughout North America. Am J Clin Nutr 100, Suppl. 1, 490S495S.
21. Tilman, D & Clark, M (2014) Global diets link environmental sustainability and human health. Nature 515, 518522.
22. Vieux, F, Soler, LG, Touazi, D et al. (2013) High nutritional quality is not associated with low greenhouse gas emissions in self-selected diets of French adults. Am J Clin Nutr 97, 569583.
23. Berners-Lee, M, Hoolohan, C, Cammack, H et al. (2012) The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 43, 184190.
24. Briggs, AD, Kehlbacher, A, Tiffin, R et al. (2013) Assessing the impact on chronic disease of incorporating the societal cost of greenhouse gases into the price of food: an econometric and comparative risk assessment modelling study. BMJ Open 3, e003543.
25. Hallström, E, Röös, E & Börjesson, P (2014) Sustainable meat consumption: a quantitative analysis of nutritional intake, greenhouse gas emissions and land use from a Swedish perspective. Food Policy 47, 8190.
26. Hendrie, GA, Ridoutt, BG, Wiedmann, TO et al. (2014) Greenhouse gas emissions and the Australian diet – comparing dietary recommendations with average intakes. Nutrients 6, 289303.
27. Hoolohan, C, Berners-Lee, M, McKinstry-West, J et al. (2013) Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. Energy Policy 63, 10651074.
28. Milner, J, Green, R, Dangour, AD et al. (2015) Health effects of adopting low greenhouse gas emission diets in the UK. BMJ Open 5, e007364.
29. Meier, T & Christen, O (2012) Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ Sci Technol 47, 877888.
30. Temme, E, Bakker, HME, Brosens, MCC et al. (2013) Environmental and nutritional impact of diets with less meat and dairy – modeling studies in Dutch children. Proc Nutr Soc 72, E321.
31. Tukker, A, Goldbohm, RA, de Koning, A et al. (2011) Environmental impacts of changes to healthier diets in Europe. Ecol Econ 70, 17761788.
32. van Dooren, C, Marinussen, M, Blonk, H et al. (2014) Exploring dietary guidelines based on ecological and nutritional values: a comparison of six dietary patterns. Food Policy 44, 3646.
33. Wilson, N, Nghiem, N, Ni Mhurchu, C et al. (2013) Foods and dietary patterns that are healthy, low-cost, and environmentally sustainable: a case study of optimization modeling for New Zealand. PLoS One 8, e59648.
34. Black, RE (2014) Global distribution and disease burden related to micronutrient deficiencies. Nestle Nutr Inst Workshop Ser 78, 2128.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Payne supplementary material
Tables S1-S3 and References

 Word (46 KB)
46 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 122
Total number of PDF views: 571 *
Loading metrics...

Abstract views

Total abstract views: 1432 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th July 2018. This data will be updated every 24 hours.