Skip to main content
×
×
Home

Improving measurement in nutrition literacy research using Rasch modelling: examining construct validity of stage-specific ‘critical nutrition literacy’ scales

  • Øystein Guttersrud (a1), Jorån Østerholt Dalane (a2) and Sverre Pettersen (a2)
Abstract
Objective

Critical nutrition literacy (CNL), as an increasingly important area in public health nutrition, can be defined as the ability to critically analyse nutrition information, increase awareness and participate in action to address barriers to healthy eating behaviours. Far too little attention has been paid to establishing valid instruments for measuring CNL. The aim of the present study was to assess the appropriateness of utilizing the latent scales of a newly developed instrument assessing nursing students’ ‘engagement in dietary habits’ (the ‘engagement’ scale) and their level of ‘taking a critical stance towards nutrition claims and their sources’ (the ‘claims’ scale).

Design

Data were gathered by distributing a nineteen-item paper-and-pencil self-report questionnaire to university colleges offering nursing education. The study had a cross-sectional design using Rasch analysis. Data management and analysis were performed using the software packages RUMM2030 and SPSS version 20.

Setting

School personnel handed out the questionnaires.

Subjects

Four hundred and seventy-three students at ten university colleges across Norway responded (52 % response rate).

Results

Disordered thresholds were rescored, an under-discriminating item was discarded and one item showing uniform differential item functioning was split. The assumption of item locations being differentiated by stages was strengthened. The analyses demonstrated possible dimension violations of local independence in the ‘claims’ scale data and the ‘engagement’ scale could have been better targeted.

Conclusions

The study demonstrates the usefulness of Rasch analysis in assessing the psychometric properties of scales developed to measure CNL. Qualitative research designs could further improve our understanding of CNL scales.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Improving measurement in nutrition literacy research using Rasch modelling: examining construct validity of stage-specific ‘critical nutrition literacy’ scales
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Improving measurement in nutrition literacy research using Rasch modelling: examining construct validity of stage-specific ‘critical nutrition literacy’ scales
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Improving measurement in nutrition literacy research using Rasch modelling: examining construct validity of stage-specific ‘critical nutrition literacy’ scales
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Email oystein.guttersrud@naturfagsenteret.no
References
Hide All
1. Silk, KJ, Sherry, J, Winn, B et al. (2008) Increasing nutrition literacy: testing the effectiveness of print, web site, and game modalities. J Nutr Educ Behav 40, 310.
2. Nutbeam, D (2000) Health literacy as a public health goal: a challenge for contemporary health education and communication strategies into the 21st century. Health Promot Int 3, 259267.
3. Pettersen, S (2009) Kostholdsinformasjon og annen helseinformasjon. In Mat og helse i skolen. En fagdidaktisk innføring (Food and Health in Schools. An Introduction to Education), pp. 87100. Bergen: Fagbokforlaget.
4. Pettersen, S (2007) Health Claims and Scientific Knowledge. A Study of How Students of Health Sciences, their Teachers, and Newspaper Journalists Relate to Health Claims in Society. Oslo: University of Oslo.
5. Organisation for Economic Co-operation and Development, Programme for International Student Assessment (2003) The PISA 2003 Assessment Framework: Mathematics, Reading, Science and Problem Solving Knowledge and Skills. Paris: OECD Publications.
6. Organisation for Economic Co-operation and Development, Programme for International Student Assessment (2004) Learning for Tomorrow's World. First Results From PISA 2003. Paris: OECD Publications.
7. Dalane, 2001. Nutrition literacy hos sykepleierstudenter (Nursing Students’ Nutrition Literacy). Kjeller: Oslo and Akershus University College.
8. Aarnes, SB (2009) Utvikling og utprøving av et spørreskjema for å kartlegge nutrition literacy: assosiasjon til kjønn, utdannelse og fysisk aktivitetsnivå (Development and Testing of a Questionnaire to Assess Nutrition Literacy: Association with Gender, Education and Physical Activity Level). Akershus: Akershus University College Norway.
9. Kjøllesdal, JG (2009) Nutrition literacy. Utvikling og utprøving av et spørreskjema som måler grader av nutrition literacy (Development and Testing of a Questionnaire Measuring Levels of Nutrition Literacy). Kjeller: Oslo and Akershus University College.
10. Andrich, D (1988) Rasch Models for Measurement. Beverly Hills, CA: SAGE Publications.
11. Rasch, G (1960) Probabilistic Models for Some Intelligence and Achievement Tests. Copenhagen: Danish Institute for Educational Research. Expanded edition 1983. Chicago, IL: MESA Press.
12. Smith, EV (2002) Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. J Appl Measure 3, 205231.
13. Linacre, JM (1998) Detecting multidimensionality: which residual data-type works best? J Outcome Meas 2, 266283.
14. Andrich, D, de Jong, JHAL & Sheridan, BE (1997) Diagnostic opportunities with the Rasch model for ordered response categories. In Applications of Latent Trait and Latent Class Models in the Social Sciences, pp. 5970 [J Rost and R Langeheine, editors]. New York: Waxmann.
15. Andrich, D (1978) A rating scale formulation for ordered response categories. Psychometrika 43, 561573.
16. Wright, BD & Masters, GN (1982) Rating Scale Analysis: Rasch Measurement. Chicago, IL: MESA Press.
17. Fisher, RA (1958) Statistical Methods for Research Workers, 13th ed. New York: Hafner.
18. Smith, RM & Plackner, C (2009) The family approach to assessing fit in Rasch measurement. J Appl Measure 10, 424437.
19. Andrich, D (1985) An elaboration of Guttman scaling with Rasch models for measurement. In Sociological Methodology, pp. 3380 [N Brandon-Tuma, editor]. San Fransisco, CA: Jossey-Bass.
20. Andrich, D (1982) An index of person separation in latent trait theory, the traditional KR-20 index, and the Guttman scale response pattern. Educ Res Perspect 9, 95104.
21. Bland, JM & Altman, DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310, 170.
22. RUMM (2009) Extending the RUMM2030 Analysis, 7th ed. Duncraig, Australia: RUMM Laboratory Pty Ltd.
23. Traub, RE & Rowley, GL (1981) Understanding reliability. Educ Measure Issues Pract 10, 3745.
24. Andrich, D & Hagquist, C (2001) Taking Account of Differential Item Functioning through Principals on Equating. Research Report no. 12. Perth, Australia: Social Measurement Laboratory, Murdoch University.
25. Brodersen, J, Meads, D, Kreiner, S et al. (2007) Methodological aspects of differential item functioning in the Rasch model. J Med Econ 10, 309324.
26. Looveer, J & Mulligan, J (2009) The efficacy of link items in the construction of a numeracy achievement scale from Kindergarten to Year 6. J Appl Measure 10, 247265.
27. Andrich, D & Kreiner, S (2010) Quantifying response dependence between two dichotomous items using the Rasch model. Appl Psychol Measure 34, 181192.
28. Marais, I & Andrich, D (2008) Effects of varying magnitude and patterns of response dependence in the unidimensional Rasch model. J Appl Measure 9, 105124.
29. Marais, I & Andrich, D (2008) Formalising dimension and response violations of local independence in the unidimensional Rasch model. J Appl Measure 9, 200215.
30. Ryan, JP (1983) Introduction to latent trait analysis and item response theory. In Testing in the Schools New Directions for Testing and Measurement, pp. 4864 [WE Hathaway, editor]. San Francisco, CA: Jossey-Bass.
31. RUMM (2009) Interpreting RUMM2030 Part IV Multidimensionality and Subtests in RUMM, 1st ed. Duncraig, Australia: RUMM Laboratory Pty Ltd.
32. Andrich, D, Humphry, SM & Marais, I (2012) Quantifying local, response dependence between two polytomous items using the Rasch model. Appl Psychol Meas 36, 309324.
33. Smith, EV (2005) Effect of item redundancy on Rasch item and person estimates. J Appl Measure 6, 147163.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed