Skip to main content

Subclinical inflammation affects iron and vitamin A but not zinc status assessment in Senegalese children and Cambodian children and women

  • Marion Fiorentino (a1), Marlène Perignon (a1), Khov Kuong (a2), Chhoun Chamnan (a2), Jacques Berger (a1) and Frank T Wieringa (a1)...
  • Please note a correction has been issued for this article.

To assess the impact of the acute-phase response (APR) during inflammation on Fe, Zn and vitamin A biomarkers to allow accurate evaluation of micronutrient status in populations.


Ferritin (FER), soluble transferrin receptor (TfR), retinol-binding protein (RBP), Zn, α1-acid glycoprotein and C-reactive protein concentrations were measured. Correction factors (CF) for each biomarker were calculated as the ratio for groups at different stages of inflammation v. the reference group without inflammation.


Senegalese (n 594) and Cambodian schoolchildren (n 2471); Cambodian women of reproductive age (n 2117).


TfR was higher during the incubation phase (CF=1·17) and lower during early and late convalescence (CF=0·87 and 0·78). FER was higher during all phases (CF=0·83, 0·48 and 0·65, respectively). RBP was higher during incubation (CF=0·88) and lower during early convalescence (CF=1·21). No effect of inflammation on Zn status was found.


Inflammation led to overestimation of Fe status and underestimation of vitamin A status. The response of the biomarker for vitamin A status to inflammation depended on the vitamin A status of the populations. Surprisingly, the assessment of Zn status was hardly affected by inflammation. Different phases of the APR had opposite effects on the assessment of Fe status using TfR. More research is needed to define the correct methods to adjust for inflammation in nutritional studies.

Corresponding author
* Corresponding author: Email
Hide All

The original version of this article was published with incorrect author affiliation information. A notice detailing this has been published and the error rectified in the online PDF and HTML copies.

Hide All
1. Black, RE, Victora, CG, Walker, SP et al. (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427451.
2. Delisle, HF (2008) Poverty: the double burden of malnutrition in mothers and the intergenerational impact. Ann N Y Acad Sci 1136, 172184.
3. Thurnham, DI, Mburu, AS, Mwaniki, DL et al. (2005) Micronutrients in childhood and the influence of subclinical inflammation. Proc Nutr Soc 64, 502509.
4. Thurnham, DI (2014) Interactions between nutrition and immune function: using inflammation biomarkers to interpret micronutrient status. Proc Nutr Soc 73, 18.
5. Thurnham, DI, McCabe, GP, Northrop-Clewes, CA et al. (2003) Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: meta-analysis. Lancet 362, 20522058.
6. Wieringa, FT, Dijkhuizen, MA, West, CE et al. (2002) Estimation of the effect of the acute phase response on indicators of micronutrient status in Indonesian infants. J Nutr 132, 30613066.
7. Rosales, FJ, Ritter, S, Zolfaghari, R et al. (1996) Effects of acute inflammation on plasma retinol, retinol-binding protein, and its mRNA in the liver and kidneys of vitamin A-sufficient rats. J Lipid Res 37, 962971.
8. World Health Organization (2007) Assessing the Iron Status of Populations: Including Literature Reviews. Report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level, Geneva, Switzerland, 6–8 April 2004. Geneva: WHO/CDC.
9. Cook, JD, Flowers, CH & Skikne, BS (2003) The quantitative assessment of body iron. Blood 101, 33593363.
10. Beguin, Y (2003) Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin Chim Acta 329, 922.
11. Phiri, K, Calis, J, Siyasiya, A et al. (2009) New cut-off values for ferritin and soluble transferrin receptor for the assessment of iron deficiency in children in a high infection pressure area. J Clin Pathol 62, 11031106.
12. Punnonen, K, Irjala, K & Rajamäki, A (1997) Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood 89, 10521057.
13. Brown, KH (1998) Effect of infections on plasma zinc concentration and implications for zinc status assessment in low-income countries. Am J Clin Nutr 68, 2 Suppl., 425S429S.
14. Brown, KH, Rivera, JA, Bhutta, Z et al. (2004) International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25, 1 Suppl. 2, S99S203.
15. Fiorentino, M, Bastard, G, Sembène, M et al. (2013) Anthropometric and micronutrient status of school-children in an urban West Africa setting: a cross-sectional study in Dakar (Senegal). PLoS One 8, e84328.
16. Perignon, M, Fiorentino, M, Kuong, K et al. (2016) Impact of multi-micronutrient fortified rice on hemoglobin, iron and vitamin A status of Cambodian schoolchildren: a double-blind cluster-randomized controlled trial. Nutrients 8, 29.
17. Scobie, HM, Mao, B, Buth, S et al. (2016) Tetanus immunity among women aged 15 to 39 years in Cambodia: a national population-based serosurvey, 2012. Clin Vaccine Immunol 23, 546554.
18. Erhardt, JG, Estes, JE, Pfeiffer, CM et al. (2004) Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J Nutr 134, 31273132.
19. Thurnham, DI, McCabe, LD, Haldar, S et al. (2010) Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: a meta-analysis. Am J Clin Nutr 92, 546555.
20. World Health Organization (2011) Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations. Geneva: WHO.
21. de Pee, S & Dary, O (2002) Biochemical indicators of vitamin A deficiency: serum retinol and serum retinol binding protein. J Nutr 132, 9 Suppl., 2895S2901S.
22. Engle-Stone, R, Haskell, MJ, Ndjebayi, AO et al. (2011) Plasma retinol-binding protein predicts plasma retinol concentration in both infected and uninfected Cameroonian women and children. J Nutr 141, 22332241.
23. West, KP Jr (2002) Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr 132, Suppl. 9, 2857S2866S.
24. Tanumihardjo, SA (2004) Assessing vitamin A status: past, present and future. J Nutr 134, issue 1, 290S293S.
25. Gibson, RS (1990) Principles of Nutritional Assessment. New York: Oxford University Press.
26. Righetti, AA, Glinz, D, Adiossan, LG et al. (2012) Interactions and potential implications of Plasmodium falciparum–hookworm coinfection in different age groups in south-central Côte d’Ivoire. PLoS Negl Trop Dis 6, e1889.
27. Grant, FK, Suchdev, PS, Flores-Ayala, R et al. (2012) Correcting for inflammation changes estimates of iron deficiency among rural Kenyan preschool children. J Nutr 142, 105111.
28. Beisel, WR (1976) Trace element in infectious processes. Med Clin North Am 60, 831849.
29. Duncan, A, Talwar, D, McMillan, DC et al. (2012) Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am J Clin Nutr 95, 6471.
30. Perignon, M, Fiorentino, M, Kuong, K et al. (2014) Stunting, poor iron status and parasite infection are significant risk factors for lower cognitive performance in Cambodian school-aged children. PLoS One 9, e112605.
31. Wessling-Resnick, M (2010) Iron homeostasis and the inflammatory response. Annu Rev Nutr 30, 105122.
32. Bui, VQ, Stein, AD, DiGirolamo, AM et al. (2012) Associations between serum C-reactive protein and serum zinc, ferritin, and copper in Guatemalan school children. Biol Trace Elem Res 148, 154160.
33. Black, R (2003) Micronutrient deficiency – an underlying cause of morbidity and mortality. Bull World Health Organ 81, 79.
34. Cichon, B, Ritz, C, Fabiansen, C et al. (2017) Assessment of regression models for adjustment of iron status biomarkers for inflammation in children with moderate acute malnutrition in Burkina Faso. J Nutr 147, 125132.
35. World Health Organization (2001) Iron Deficiency Anaemia Assessment, Prevention and Control. A Guide for Programme Managers. Geneva: WHO.
36. Goodman, MN (1991) Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Am J Physiol 260, E727E730.
37. Bresnahan, K, Chileshe, J & Tanumihardjo, S (2014) Acute phase response is associated with decreased nutrient intake and altered markers of micronutrient status in Zambian children (624.16). FASEB J 28, Suppl. 1, 624.616.
38. Beisel, WR (1998) Infection-induced depression of serum retinol – a component of the acute phase response or a consequence? Am J Clin Nutr 68, 993994.
39. Mitra, AK, Alvarez, JO, Guay-Woodford, L et al. (1998) Urinary retinol excretion and kidney function in children with shigellosis. Am J Clin Nutr 68, 10951103.
40. Dillon, D, Htet, MK & Chiwile, FP (2010) The application of correction factors on serum retinol of Indonesia school children. Med J Indones 19, 258263.
41. Hotz, C, Chileshe, J, Siamusantu, W et al. (2012) Vitamin A intake and infection are associated with plasma retinol among pre-school children in rural Zambia. Public Health Nutr 15, 16881696.
42. Wieringa, F, Dijkhuizen, M, West, C et al. (2004) Reduced production of immunoregulatory cytokines in vitamin A- and zinc-deficient Indonesian infants. Eur J Clin Nutr 58, 14981504.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 9
Total number of PDF views: 52 *
Loading metrics...

Abstract views

Total abstract views: 242 *
Loading metrics...

* Views captured on Cambridge Core between 18th January 2018 - 18th June 2018. This data will be updated every 24 hours.