Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-6tv95 Total loading time: 0.2 Render date: 2021-05-13T06:04:41.129Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Fireball streak detection with minimal CPU processing requirements for the Desert Fireball Network data processing pipeline

Published online by Cambridge University Press:  01 January 2020

Martin C. Towner
Affiliation:
Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Martin Cupak
Affiliation:
Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Jean Deshayes
Affiliation:
School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Robert M. Howie
Affiliation:
Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Ben A. D. Hartig
Affiliation:
Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Jonathan Paxman
Affiliation:
School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Eleanor K. Sansom
Affiliation:
Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Hadrien A. R. Devillepoix
Affiliation:
Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Trent Jansen-Sturgeon
Affiliation:
Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Philip A. Bland
Affiliation:
Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia6845, Australia
Corresponding

Abstract

The detection of fireballs streaks in astronomical imagery can be carried out by a variety of methods. The Desert Fireball Network uses a network of cameras to track and triangulate incoming fireballs to recover meteorites with orbits and to build a fireball orbital dataset. Fireball detection is done on-board camera, but due to the design constraints imposed by remote deployment, the cameras are limited in processing power and time. We describe the processing software used for fireball detection under these constrained circumstances. Two different approaches were compared: (1) A single-layer neural network with 10 hidden units that were trained using manually selected fireballs and (2) a more traditional computational approach based on cascading steps of increasing complexity, whereby computationally simple filters are used to discard uninteresting portions of the images, allowing for more computationally expensive analysis of the remainder. Both approaches allowed a full night’s worth of data (over a thousand 36-megapixel images) to be processed each day using a low-power single-board computer. We distinguish between large (likely meteorite-dropping) fireballs and smaller fainter ones (typical ‘shooting stars’). Traditional processing and neural network algorithms both performed well on large fireballs within an approximately 30 000-image dataset, with a true positive detection rate of 96% and 100%, respectively, but the neural network was significantly more successful at smaller fireballs, with rates of 67% and 82%, respectively. However, this improved success came at a cost of significantly more false positives for the neural network results, and additionally the neural network does not produce precise fireball coordinates within an image (as it classifies). Simple consideration of the network geometry indicates that overall detection rate for triangulated large fireballs is calculated to be better than 99.7% and 99.9%, by ensuring that there are multiple double-station opportunities to detect any one fireball. As such, both algorithms are considered sufficient for meteor-dropping fireball event detection, with some consideration of the acceptable number of false positives compared to sensitivity.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2020; published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Ball, N. M., & Brunner, R. J. 2010, Int. J. Modern Phys. D, 19, 1049CrossRefGoogle Scholar
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393CrossRefGoogle Scholar
Bishop, C., 2006, Pattern Recognition and Machine Learning. Information Science and Statistics (New York, Springer-Verlag), https://www.springer.com/gp/book/9780387310732Google Scholar
Bland, P. A. 2012, Australian J. Earth Sci., 59, 177CrossRefGoogle Scholar
Borovicka, J. 1990, BAICz, 41, 391Google Scholar
Brown, P., Weryk, R. J., Kohut, S., Edwards, W. N., & Krzeminski, Z. 2010, WGN, J. Int. Meteor Organ., 38, 25Google Scholar
Ceplecha, Z. 1987, BAICz, 38, 222Google Scholar
Ceplecha, Z. 1992, A&A, 263, 361Google Scholar
Cl’emençon, S. 2015, Technical report, A Machine-Learning View of Quantitative Finance. Institut Mines Telecom LTCI UMR Telecom ParisTech & CNRS No. 5141Google Scholar
Colas, F. 2014, in Proceedings of the International Meteor Conference, Giron, France, 18–21 September 2014, 34Google Scholar
Cooke, W. J., & Moser, D. E. 2011, in International Meteor Conference 2011, Sibiu, RomaniaGoogle Scholar
DesJardins, M. E. 1997, Technical report, Machine Learning for Military Operations. SRI International Menlo Park CACrossRefGoogle Scholar
Devillepoix, H. A. R. 2018, Meteoritics Planetary Sci., 53, 2212CrossRefGoogle Scholar
Duda, R. O., & Hart, P. E. 1972, Commun. ACM, 15, 11CrossRefGoogle Scholar
Gritsevich, M. 2017, in Assessment and Mitigation of Asteroid Impact Hazards. Astrophysics and Space Science Proceedings, eds. J. M. Trigo-Rodríguez, M. Gritsevich, & H. Palme (Switzerland, Springer International Publishing), 153183, doi:10.1007/978-3-319-46179-3CrossRefGoogle Scholar
Halliday, I., Blackwell, A. T., & Griffin, A. A. 1989, Meteoritics, 24, 173CrossRefGoogle Scholar
Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D., Schlesinger, B. M., Teuben, P. J., Thompson, R. W., & Warnock, A., 2001, A&A, 376, 359CrossRefGoogle Scholar
Howie, R. M., Paxman, J., Bland, P. A., Towner, M. C., Cupak, M., Sansom, E. K., & Devillepoix, H. A. R. 2017a, ExA, 43, 237Google Scholar
Howie, R. M., Paxman, J., Bland, P. A., Towner, M. C., Sansom, E. K., & Devillepoix, H. A. R., 2017b, M&PS, 52, 1669Google Scholar
Jansen-Sturgeon, T., Sansom, E. K., & Bland, P. A. 2019, Comparing analytical and numerical approaches to meteoroid orbit determination using Hayabusa telemetry. Meteorit Planet Sci, 54, 2149, doi:10.1111/maps.13376CrossRefGoogle Scholar
Jenniskens, P., Gural, P. S., Dynneson, L., Grigsby, B. J., Newman, K. E., Borden, M., Koop, M., & Holman, D. 2011, Icar, 216, 40CrossRefGoogle Scholar
Matas, J., Galambos, C., & Kittler, J. 2000, Comput. Vis. Image Underst., 78, 119CrossRefGoogle Scholar
Molau, S. 1998, in Proceedings of the International Meteor Conference. Stara Lesna, Slovakia, 9Google Scholar
Nielsen, M. A. 2015, Neural Networks and Deep Learning (Determination Press)Google Scholar
Oberst, J. 1998, M&PS, 33, 49Google Scholar
Oliphant, T. E. 2007, Comput. Sci. Eng., 9, 10CrossRefGoogle Scholar
Otsu, N., 1979, A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 9, 62, doi:https://doi.org/10.1109/TSMC.1979.4310076CrossRefGoogle Scholar
Perlich, C., Dalessandro, B., Raeder, T., Stitelman, O., & Provost, F. 2014, Mach. Learn., 95, 103CrossRefGoogle Scholar
Samuel, A. L. 1959, IBM J. Res. Develop., 3, 210CrossRefGoogle Scholar
Sansom, E. K., Bland, P., Paxman, J., & Towner, M. 2015, M&PS, 50, 1423Google Scholar
Skamarock, W. C. 2008, Technical report NCAR/TN–475+STR, A Description of the Advanced Research WRF Version 3. National Center for Atmospheric Research, doi:10.5065/D68S4MVHCrossRefGoogle Scholar
Spurný, P., Borovička, J., & Shrbený, L. 2007, in Near Earth Objects, Our Celestial Neighbors: Opportunity and Risk, 121, doi:10.1017/S1743921307003146CrossRefGoogle Scholar
Spurný, P. 2012, M&PS, 47, 163Google Scholar
Trigo-Rodriguez, J. M., Llorca, J., Castro-Tirado, A. J., Ortiz, J. L., Docobo, J. A., & Fabregat, J., 2006, The Spanish Fireball Network. Astronomy & Geophysics 47, 6.26, doi:https://doi.org/10.1111/j.1468-4004.2006.47626.x.CrossRefGoogle Scholar
Urban, S. E., Corbin, T. E., & Wycoff, G. L. 1998, Astron. J., 115, 2161CrossRefGoogle Scholar
van der Walt, S. 2014, PeerJ, 2, e453CrossRefGoogle Scholar
Virtanen, P. 2019, arXiv e-prints, arXiv:1907.10121Google Scholar
Weryk, R. J., Brown, P. G., Domokos, A., Edwards, W. N., Krzeminski, Z., Nudds, S. H., & Welch, D. L. 2007, Earth Moon Planets, 102, 241CrossRefGoogle Scholar
Zhao, S. 2010, Masters thesis, Penn StateGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fireball streak detection with minimal CPU processing requirements for the Desert Fireball Network data processing pipeline
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fireball streak detection with minimal CPU processing requirements for the Desert Fireball Network data processing pipeline
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fireball streak detection with minimal CPU processing requirements for the Desert Fireball Network data processing pipeline
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *