Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T11:50:50.843Z Has data issue: false hasContentIssue false

Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe

Published online by Cambridge University Press:  05 March 2013

Tamara M. Davis
Affiliation:
University of New South Wales, Sydney NSW 2052, Australia; (e-mail: tamarad@phys.unsw.edu.au)
Charles H. Lineweaver
Affiliation:
University of New South Wales, Sydney NSW 2052, Australia; (e-mail: charley@bat.phys.unsw.edu.au)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use standard general relativity to illustrate and clarify several common misconceptions about the expansion of the universe. To show the abundance of these misconceptions we cite numerous misleading, or easily misinterpreted, statements in the literature. In the context of the new standard ΛCDM cosmology we point out confusions regarding the particle horizon, the event horizon, the ‘observable universe’ and the Hubble sphere (distance at which recession velocity = c). We show that we can observe galaxies that have, and always have had, recession velocities greater than the speed of light. We explain why this does not violate special relativity and we link these concepts to observational tests. Attempts to restrict recession velocities to less than the speed of light require a special relativistic interpretation of cosmological redshifts. We analyze apparent magnitudes of supernovae and observationally rule out the special relativistic Doppler interpretation of cosmological redshifts at a confidence level of 23σ.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Bennett, C. L., Halpern, M., Hinshaw, G., et al. 2003, ApJS, 148, 1 Google Scholar
Chen, H.-W., Lanzetta, K. M., & Pascarelle, S. 1999, Nature, 398, 586 CrossRefGoogle Scholar
Davis, T. M., & Lineweaver, C. H. 2001, in Cosmology and Particle Physics 2000, eds. R. Durrer, J. Garcia-Bellido, & M. Shaposhnikov (New York: American Institute of Physics conference proceedings, Volume 555), 348 Google Scholar
Davis, T. M., & Lineweaver, C. H. 2004, in preparationGoogle Scholar
Davis, T. M., Lineweaver, C. H., & Webb, J. K. 2003, AmJPh, 71, 358 Google Scholar
Ebert, R., & Trümper, M. 1975, NYASA, 262, 470 Google Scholar
Ellis, G. F. R., & Rothman, T. 1993, AmJPh, 61, 883 Google Scholar
Fan, X., Strauss, M. A., Schneider, D. P., et al. 2003, AJ, 125, 1649 Google Scholar
Goldhaber, G., Dustua, S., Gabi, S., et al. 1997, in Thermonuclear Supernovae, NATO ASIC Proceedings 486, eds. R. Canal, P. Ruiz-LaPuente, & J. Isern (Dordrecht: Kluwer Academic Publishers), 777 CrossRefGoogle Scholar
Goldhaber, G., Groom, D. E., Kim, A., et al. 2001, ApJ, 558, 359 CrossRefGoogle Scholar
Gudmundsson, E. H., & Björnsson, G. 2002, ApJ, 565, 1 Google Scholar
Harrison, E. R. 1981, Cosmology: the science of the universe, 1st Edition (Cambridge: Cambridge University Press), and 2nd Edition (2000)Google Scholar
Harrison, E. R. 1993, ApJ, 403, 28 Google Scholar
Kiang, T. 1991, AcASn, 11, 197 Google Scholar
Kiang, T. 1997, ChA&A, 21, 1 Google Scholar
Kiang, T. 2001, ChA&A, 25, 141 Google Scholar
Lake, K. 1981, ApJ, 247, 17 Google Scholar
Landsberg, P. T., & Evans, D. A. 1977, Mathematical Cosmology, an Introduction (Oxford: Clarendon Press)Google Scholar
Leibundgut, B., Schommer, R., Phillips, M., et al. 1996, ApJ, 466, L21 CrossRefGoogle Scholar
Liske, J. 2000, MNRAS, 319, 557 Google Scholar
Loeb, A. 1998, ApJ, 499, L111 Google Scholar
Murdoch, H. S. 1977, QJRAS, 18, 242 Google Scholar
Murdoch, H. S. 1993, Quasars — how far? how fast?, unpublished, sect. 1Google Scholar
Outram, P. J., Chaffee, F. H., & Carswell, R. F. 1999, MNRAS, 310, 289 Google Scholar
Page, D. N. 1993, unpublished, gr-qc/9303008Google Scholar
Peacock, J.A. 1999, Cosmological Physics, (Cambridge: Cambridge University Press)Google Scholar
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565 Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1989, Numerical Recipes (Fortran Version), (Cambridge: Cambridge University Press)Google Scholar
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009 Google Scholar
Riess, A. G., Filippenko, A. V., Leonard, D., et al. 1997, AJ, 114, 722 Google Scholar
Rindler, W. 1956, MNRAS, 6, 662 CrossRefGoogle Scholar
Rindler, W. 1977, Essential relativity, special, general, and cosmological, (NewYork: Springer)Google Scholar
Sandage, A. 1962, ApJ, 136, 319 Google Scholar
Silverman, A. N. 1986, AmJPh, 54, 1092 Google Scholar
Stuckey, W. M. 1992, AmJPh, 60, 142 Google Scholar
Weinberg, S. 1972, Gravitation and Cosmology (NewYork:Wiley)Google Scholar
Wilson, O. C. 1939, ApJ, 90, 634 Google Scholar
Wright, E. L. 2001, Errors in tired light cosmology, http://www.astro.ucla.edu/~wright/tiredlit.htm Google Scholar