Hostname: page-component-f7d5f74f5-wqfsk Total loading time: 0 Render date: 2023-10-03T09:39:25.074Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Maser Source-Finding Methods in HOPS

Published online by Cambridge University Press:  02 January 2013

A. J. Walsh*
Centre for Astronomy, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4814, Australia
C. Purcell
School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
S. Longmore
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
C. H. Jordan
Centre for Astronomy, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4814, Australia CSIRO Astronomy and Space Science, PO BOX 76, Epping, NSW 1710, Australia
V. Lowe
CSIRO Astronomy and Space Science, PO BOX 76, Epping, NSW 1710, Australia School of Physics, University of NSW, Sydney, NSW 2052, Australia
FCorresponding author. Email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The H2O Southern Galactic Plane Survey (HOPS) has observed 100 deg2 of the Galactic plane, using the Mopra radio telescope to search for emission from multiple spectral lines in the 12-mm band (19.5–27.5 GHz). Perhaps the most important of these spectral lines is the 22.2-GHz water-maser transition. We describe the methods used to identify water-maser candidates and subsequent confirmation of the sources. Our methods involve a simple determination of likely candidates by searching peak emission maps, utilising the intrinsic nature of water-maser emission, spatially unresolved and spectrally narrow-lined. We estimate completeness limits and compare our method with results from the duchamp source finder. We find that the two methods perform similarly. We conclude that the similarity in performance is due to the intrinsic limitation of the noise characteristics of the data. The advantages of our method are that it is slightly more efficient in eliminating spurious detections and is simple to implement. The disadvantage is that it is a manual method of finding sources and so is not practical on datasets much larger than HOPS, or for datasets with extended emission that needs to be characterised. We outline a two-stage method for the most efficient means of finding masers, using duchamp.

Research Article
Copyright © Astronomical Society of Australia 2012


Barlow, M. J. et al. , 1996, A&AL, 315, 341Google Scholar
Caswell, J. L. et al. , 2010, MNRAS, 404, 1029Google Scholar
Cheung, A. C., Rank, D. M. & Townes, C. H., 1969, Nature, 221, 626CrossRefGoogle Scholar
Claussen, M. J. et al. , 1984, ApJL, 285, 79CrossRefGoogle Scholar
Claussen, M. J., Wilking, B. A., Benson, P. J., Wootten, A., Myers, P. C. & Terebey, S., 1996, ApJS, 106, 111CrossRefGoogle Scholar
Dickinson, D. F., 1976, ApJS, 30, 259CrossRefGoogle Scholar
Egan, M. P. & Price, S. D., 1996, AJ, 112, 2862CrossRefGoogle Scholar
Forster, J. R. & Caswell, J. L., 1999, A&AS, 137, 43Google ScholarPubMed
Forster, J. R. & Caswell, J. L., 2000, ApJ, 530, 371CrossRefGoogle Scholar
Gundermann, E., 1965, PhD Thesis, Harvard University, Cambridge, MA, USAGoogle Scholar
Hinkle, K. H. & Barnes, T. G., 1979, ApJ, 227, 923CrossRefGoogle Scholar
Johnston, S. et al. , 2007, PASA, 24, 174CrossRefGoogle Scholar
Miranda, L. F., G'omez, Y., Anglada, G. & Torrelles, J. M., 2001, Nature, 414, 284Google Scholar
Purcell, C. R. et al. , 2011, MNRAS, submittedGoogle Scholar
Voronkov, M. A., Sobolev, A. M., Ellingsen, S. P. & Ostrovskii, A. B., 2005, MNRAS, 362, 995Google Scholar
Walsh, A. J., Burton, M. G., Hyland, A. R. & Robinson, G., 1998, MNRAS, 301, 640CrossRefGoogle Scholar
Walsh, A. J., Myers, P. C., Di Francesco, J., Mohanty, S., Bourke, T. L., Gutermuth, R. & Wilner, D., 2007, ApJ, 655, 958CrossRefGoogle Scholar
Walsh, A. J., Lo, N., Burton, M. G., White, G. L., Purcell, C. R., Longmore, S. N., Phillips, C. J. & Brooks, K. J., 2008, PASA, 25, 105CrossRefGoogle Scholar
Walsh, A. J. et al. , 2011, MNRAS, 416, 1764Google Scholar
Weaver, H., Williams, D. R. W., Dieter, N. H. & Lum, W. T., 1965, Nature, 208, 29CrossRefGoogle Scholar
Whiting, M., 2011, MNRAS, submittedGoogle Scholar
Williams, J. P., de Geus, E. J. & Blitz, L., 1994, ApJ, 428, 693CrossRefGoogle Scholar