Skip to main content
×
Home

Towards an Empirical Unified Crust–Core Description of Neutron Stars

  • Debarati Chatterjee (a1) and Francesca Gulminelli (a1)
Abstract
Abstract

Understanding the properties of the crust and the core as well as its interface is essential for accurate astrophysical modelling of phenomena such as glitches, X-ray bursts or oscillations in neutron stars. To study the crust–core properties, it is crucial to develop a unified and consistent scheme to describe both the clusterised matter in the crust and homogeneous matter in the core. The low density regime in the neutron star crust is accessible to terrestrial nuclear experiments. In order to develop a consistent description of the crust and the core of neutron stars within the same formalism, we use a density functional scheme, with the model coefficients in homogeneous matter related directly to empirical nuclear observables. In this work, we extend this scheme to non-homogeneous matter to describe nuclei in the crust. We then test this scheme against nuclear observables.

Copyright
Corresponding author
1 Email: dchatterjee@lpccaen.in2p3.fr
References
Hide All
Angeli I., & Marinova K. 2013, http://dx.doi.org/10.1016/j.adt.2011.12.006 ADNDT, 99, 69
Audi G., Wang M., Wapstra A. H., Kondev F. G. MacCormick M., Xu X., & Pfeiffer B. 2012, http://dx.doi.org/10.1088/1674-1137/36/12/002 ChPhC, 36, 1287
Aymard F., Gulminelli F., & Margueron J. 2014, http://dx.doi.org/10.1103/PhysRevC.89.065807 PhRvC, 89, 065807 2014PhRvC..89f5807A
Aymard F., Gulminelli F., & Margueron J. 2016a, 10.1088/0954-3899/43/4/045105 JPhG, 43, 045105
Aymard F., Gulminelli F., & Margueron J. 2016b, 10.1088/0954-3899/43/4/045106 JPhG, 43, 045106
Baym G., Bethe H. A., & Pethick C. J. 1971b, http://dx.doi.org/10.1016/0375-9474(71)90281-8 NuPhA, 175, 225 1971NuPhA.175..225B
Baym G., Pethick C., & Sutherland P. 1971a, http://dx.doi.org/10.1086/151216 ApJ, 170, 299 1971ApJ. . .170..299B
Buchinger F., Crawford J. E., Dutta A. K., Pearson J. M., & Tondeur F. 1994, http://dx.doi.org/10.1103/PhysRevC.49.1402 PhRvC, 49, 1402 1994PhRvC..49.1402B
Centelles M., Del Estal M., & Viñas X. 1998, http://dx.doi.org/10.1016/S0375-9474(98)00167-5 NuPhA, 635, 193 1998NuPhA.635..193C
Chatterjee D., Gulminelli F., Raduta A. R., & Margueron J. 2017, 1709.00189arXiv:1709.00189
Danielewicz P., & Lee J. 2009, http://dx.doi.org/10.1016/j.nuclphysa.2008.11.007 NuPhA, 818, 36 2009NuPhA.818. . .36D
Douchin F., & Haensel P. 2001, http://dx.doi.org/10.1051/0004-6361:20011402 A&A, 380, 151 2001A%26A. . .380..151D
Ducoin C., Margueron J., Providência C., & Vidaña I. 2011, http://dx.doi.org/10.1103/PhysRevC.83.045810 PhRvC, 83, 045810 2011PhRvC..83d5810D
Fortin M., Providência C., Raduta A. R., Gulminelli F., Zdunik J. L., Haensel P., & Bejger M. 2016, http://dx.doi.org/10.1103/PhysRevC.94.035804 PhRvC, 94, 035804 2016PhRvC..94c5804F
Grill F., Margueron J., & Sandulescu N. 2011, http://dx.doi.org/10.1103/PhysRevC.84.065801 PhRvC, 84, 065801 2011PhRvC..84f5801G
Hagen G., et al. 2016, http://dx.doi.org/10.1038/nphys3529 NatPh, 12, 186 2016NatPh..12..186H
Jodon R., Bender M., Bennaceur K., & Meyer J. 2016, http://dx.doi.org/10.1103/PhysRevC.94.024335 PhRvC, 94, 024335 2016PhRvC..94b4335J
Khan E., & Margueron J. 2013, http://dx.doi.org/10.1103/PhysRevC.88.034319 PhRvC, C88, 034319
Margueron J., Casali R., & Gulminelli F. 2017a, 1708.06894arXiv:1708.06894
Margueron J., Casali R., & Gulminelli F. 2017b, 1708.06895arXiv:1708.06895
Myers W. D., & Swiatecki W. J. 1980, http://dx.doi.org/10.1016/0375-9474(80)90623-5 NuPhA, 336, 267 1980NuPhA.336..267M
Negele J. W., & Vautherin D. 1973, http://dx.doi.org/10.1016/0375-9474(73)90349-7 NuPhA, 207, 298 1973NuPhA.207..298N
Onsi M., Dutta A. K., Chatri H., Goriely S., Chamel N., & Pearson J. M. 2008, http://dx.doi.org/10.1103/PhysRevC.77.065805 PhRvC, 77, 065805 2008PhRvC..77f5805O
Papakonstantinou P., Margueron J., Gulminelli F., & Raduta A. R. 2013, http://dx.doi.org/10.1103/PhysRevC.88.045805 PhRvC, 88, 045805 2013PhRvC..88d5805P
Patyk Z., Baran A., Berger J. F., Dechargé J., Dobaczewski J., Ring P., & Sobiczewski A. 1999, http://dx.doi.org/10.1103/PhysRevC.59.704 PhRvC, 59, 704 1999PhRvC..59..704P
Salpeter E. E. 1961, http://dx.doi.org/10.1086/147194 ApJ, 134, 669 1961ApJ. . .134..669S
Wang M., Audi G., Wapstra A. H., Kondev F. G., MacCormick M., Xu X., & Pfeiffer B. 2012, http://dx.doi.org/10.1088/1674-1137/36/12/003 ChPhC, 36, 1603
Warda M., Viñas X., Roca-Maza X., & Centelles M. 2009, http://dx.doi.org/10.1103/PhysRevC.80.024316 PhRvC, 2009PhRvC..80b4316W 80, 024316
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Publications of the Astronomical Society of Australia
  • ISSN: 1323-3580
  • EISSN: 1448-6083
  • URL: /core/journals/publications-of-the-astronomical-society-of-australia
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 47 *
Loading metrics...

* Views captured on Cambridge Core between 24th October 2017 - 14th December 2017. This data will be updated every 24 hours.