Skip to main content
    • Aa
    • Aa

Conformational dynamics of the molecular chaperone Hsp90

  • Kristin A. Krukenberg (a1), Timothy O. Street (a1), Laura A. Lavery (a1) and David A. Agard (a1) (a2)

The ubiquitous molecular chaperone Hsp90 makes up 1–2% of cytosolic proteins and is required for viability in eukaryotes. Hsp90 affects the folding and activation of a wide variety of substrate proteins including many involved in signaling and regulatory processes. Some of these substrates are implicated in cancer and other diseases, making Hsp90 an attractive drug target. Structural analyses have shown that Hsp90 is a highly dynamic and flexible molecule that can adopt a wide variety of structurally distinct states. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis only shift the equilibria between a pre-existing set of conformational states. For bacterial, yeast and human Hsp90, there is a conserved three-state (apo–ATP–ADP) conformational cycle; however; the equilibria between states are species specific. In eukaryotes, cytosolic co-chaperones regulate the in vivo dynamic behavior of Hsp90 by shifting conformational equilibria and affecting the kinetics of structural changes and ATP hydrolysis. In this review, we discuss the structural and biochemical studies leading to our current understanding of the conformational dynamics of Hsp90, as well as the roles that nucleotide, co-chaperones, post-translational modification and substrates play. This view of Hsp90's conformational dynamics was enabled by the use of multiple complementary structural methods including, crystallography, small-angle X-ray scattering (SAXS), electron microscopy, Förster resonance energy transfer (FRET) and NMR. Finally, we discuss the effects of Hsp90 inhibitors on conformation and the potential for developing small molecules that inhibit Hsp90 by disrupting the conformational dynamics.

Corresponding author
*Author for correspondence: D. A. Agard, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA. Tel.: 415-476-2521; Fax: 41-476-1902; Email:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. T. Alexandrescu , C. Abeygunawardana & D. Shortle (1994). Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: a heteronuclear NMR study. Biochemistry 33, 10631072.

S. J. Arlander , S. J. Felts , J. M. Wagner , B. Stensgard , D. O. Toft & L. M. Karnitz (2006). Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. Journal of Biological Chemistry 281, 29892998.

G. Chiosis , B. Lucas , H. Huezo , D. Solit , A. Basso & N. Rosen (2003). Development of purine-scaffold small molecule inhibitors of Hsp90. Current Cancer Drug Targets 3, 371376.

K. D. Dittmar & W. B. Pratt (1997). Folding of the glucocorticoid receptor by the reconstituted Hsp90-based chaperone machinery. The initial hsp90.p60.hsp70-dependent step is sufficient for creating the steroid binding conformation. Journal of Biological Chemistry 272, 1304713054.

H. L. Forsythe , J. L. Jarvis , J. W. Turner , L. W. Elmore & S. E. Holt (2001). Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. Journal of Biological Chemistry 276, 1557115574.

P. Gomez-Puertas , J. Martin-Benito , J. L. Carrascosa , K. R. Willison & J. M. Valpuesta (2004). The substrate recognition mechanisms in chaperonins. Journal of Molecular Recognition 17, 8594.

C. Graf , M. Stankiewicz , G. Kramer & M. P. Mayer (2009). Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO Journal 28, 602613.

J. P. Grenert , B. D. Johnson & D. O. Toft (1999). The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. Journal of Biological Chemistry 274, 1752517533.

A. Harst , H. Lin & W. M. Obermann (2005). Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochemical Journal 387, 789796.

V. D. Kekatpure , A. J. Dannenberg & K. Subbaramaiah (2009). HDAC6 modulates Hsp90 chaperone activity and regulates activation of ary1 hydrocarbon receptor signaling. J Biol Chem 284, 74367445.

P. Lee , J. Rao , A. Fliss , E. Yang , S. Garrett & A. J. Caplan (2002). The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability. Journal of Cell Biology 159, 10511059.

M. G. Marcu , A. Chadli , I. Bouhouche , M. Catelli & L. M. Neckers (2000a). The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. Journal of Biological Chemistry 275, 3718137186.

S. H. McLaughlin , H. W. Smith & S. E. Jackson (2002). Stimulation of the weak ATPase activity of human hsp90 by a client protein. Journal of Molecular Biology 315, 787798.

S. H. McLaughlin , F. Sobott , Z. P. Yao , W. Zhang , P. R. Nielsen , J. G. Grossmann , E. D. Laue , C. V. Robinson & S. E. Jackson (2006). The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. Journal of Molecular Biology 356, 746758.

S. H. Millson , A. W. Truman , F. Wolfram , V. King , B. Panaretou , C. Prodromou , L. H. Pearl & P. W. Piper (2004). Investigating the protein-protein interactions of the yeast Hsp90 chaperone system by two-hybrid analysis: potential uses and limitations of this approach. Cell Stress and Chaperones 9, 359368.

H. Ogiso , N. Kagi , E. Matsumoto , M. Nishimoto , R. Arai , M. Shirouzu , J. Mimura , Y. Fujii-Kuriyama & S. Yokoyama . (2004). Phosphorylation analysis of 90 kDa heat shock protein within the cytosolic arylhydrocarbon receptor complex. Biochemistry 43, 1551015519.

Y. Nishiya , K. Shibata , S. Saito , K. Yano , C. Oneyama , H. Nakano & S. V. Sharma (2009). Drug-target identification from total cellular lysate by drug-induced conformational changes. Analytical Biochemistry 385, 314320.

S. C. Onuoha , E. T. Coulstock , J. G. Grossmann & S. E. Jackson (2008). Structural studies on the co-chaperone Hop and its complexes with Hsp90. Journal of Molecular Biology 379, 732744.

C. M. Palermo , C. A. Westlake & T. A. Gasiewicz (2005). Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 44, 50415052.

J. J. Phillips , Z. P. Yao , W. Zhang , S. McLaughlin , E. D. Laue , C. V. Robinson & S. E. Jackson (2007). Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs. Journal of Molecular Biology 372, 11891203.

M. Retzlaff , F. Hagn , L. Mitschke , M. Hessling , F. Gugel , H. Kessler , K. Richter & J. Buchner (2010). Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Molecular Cell 37, 344354.

K. Richter , P. Muschler , O. Hainzl , J. Reinstein & J. Buchner (2003). Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. Journal of Biological Chemistry 278, 1032810333.

B. T. Scroggins , K. Robzyk , D. Wang , M. G. Marcu , S. Tsutsumi , K. Beebe , R. J. Cotter , S. Felts , D. Toft , L. Karnitz , N. Rosen & L. Neckers (2007). An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25, 151159.

A. K. Shiau , S. F. Harris , D. R. Southworth & D. A. Agard (2006). Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329340.

C. E. Stebbins , A. A. Russo , C. Schneider , N. Rosen , F. U. Hartl & N. P. Pavletich (1997). Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239250.

W. Sullivan , B. Stensgard , G. Caucutt , B. Bartha , N. McMahon , E. S. Alnemri , G. Litwack & D. Toft (1997). Nucleotides and two functional states of hsp90. Journal of Biological Chemistry 272, 80078012.

H. Wegele , P. Muschler , M. Bunck , J. Reinstein & J. Buchner (2003). Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. Journal of Biological Chemistry 278, 3930339310.

L. Whitesell , E. G. Mimnaugh , B. De Costa , C. E. Myers & L. M. Neckers (1994). Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proceedings of the National Academy of Sciences, USA 91, 83248328.

T. Weikl , P. Muschler , K. Richter , T. Veit , J. Reinstein & J. Buchner (2000). C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. J Mol Biol 303, 583592.

H. Wiech , J. Buchner , R. Zimmermann & U. Jakob (1992). Hsp90 chaperones protein folding in vitro. Nature 358, 169170.

P. Workman (2004). Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Letters 206, 149157.

W. Zhang , M. Hirshberg , S. H. McLaughlin , G. A. Lazar , J. G. Grossmann , P. R. Nielsen , F. Sobott , C. V. Robinson , S. E. Jackson & E. D. Laue (2004). Biochemical and structural studies of the interaction of Cdc37 with Hsp90. Journal of Molecular Biology 340, 891907.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *