Skip to main content Accesibility Help

Electrical activity of vertebrate photoreceptors

  • Tsuneo Tomita (a1)

It has been known since the time of Schultze (1866) that in the vertebrate retina there are two types of photoreceptors, rods and cones, and that they serve different visual functions; rods for scotopic vision, and cones for photopic. The terminology originates from the shape of the outer segments in which the photosensitive pigment molecules are contained. The cone outer segments are conic and taper towards the tips, while the rod outer segments are typically cylindrical. Fig. 1 is a schematic diagram from Brown, Gibbons & Wald (1963) of the ultrastructure of the rod and cone outer segments of the mudpuppy, Necturus, as studied by electron microscopy. Both appear to be made up of a pile of transverse paired membranes. In cones these arise by infolding of the plasma membrane, and in rods they have probably arisen in a similar way, but each pair of membranes is sealed around the edge so as to form a closed double-membrane disc (Sjöstrand, 1961). Because of the universal lamellation within the rod and cone outer segments, it looks as if there were no appreciable intracellular space, but yet Toyoda, Nosaki & Tomita (1969), and Toyoda et al. (1970) were successful in intracellular recording from the outer segments of single rods of the nocturnal gecko and frog.

Hide All
Arden, G. B. & Ikeda, H. (1966). Effects of hereditary degeneration of the retina on the early receptor potential and the corneo-fundal potential of the rat eye. Vision Res. 6, 171184.
Bortoff, A. (1964). Localization of slow potential responses in the Necturus retina. Vision Res. 4, 627635.
Bortoff, A. & Norton, A. L. (1965 a). Simultaneous recording of photoreceptor potentials and the P III component of the ERG. Vision Res. 5, 527533.
Bortoff, A. & Norton, A. L. (1965 b). Positive and negative potential responses associated with vertebrate photoreceptor cells. Nature, Lond. 206, 626627.
Bortoff, A. & Norton, A. L. (1967). An electrical model of the vertebrate photoreceptor cell. Vision Res. 7, 253263.
Brindley, G. S. & Gardner-Medwin, A. R. (1966). The origin of the early receptor potential of the retina. J. Pkysiol., Lond. 182, 185194
Brown, K. T. (1966). The analysis of ERG and the origin of its components. Jap. J. Ophthal. 10, Suppl. (Proc. 4th ISCERG Symp.), 130140.
Brown, K. T. (1968). The electroretinogram: its components and their origins. Vision Res. 8, 633677.
Brown, K. T. & Murakami, M. (1964). A new receptor potential of the monkey retina with no detectable latency. Nature, Lond. 201, 626628.
Brown, K. T. & Watanabe, K. (1962 a). Isolation and identification of a receptor potential from the pure cone fovea of the monkey retina. Nature, Lond. 193, 958960.
Brown, K. T. & Watanabe, K. (1962 b). Rod receptor potential from the retina of the night monkey. Nature, Lond. 196, 547550.
Brown, K. T. & Wiesel, T. N. (1961 a). Analysis of the intraretinal electroretinogram in the intact cat eye. J. Physiol., Lond. 158, 229256.
Brown, K. T. & Wiesel, T. N. (1961 b). Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye. J. Physiol, Lond. 158, 257280.
Brown, P. K., Gibbons, I. R. & Wald, G. (1963). The visual cells and visual pigment of the mudpuppy, Necturus. J. Cell Biol. 19, 70106.
Cone, R. A. (1967). Early receptor potential: Photoreversible charge displacement in rhodopsin. Science, N.Y. 155, 11281131.
Cone, R. A. & Brown, P. K. (1967). Dependence of the early receptor potential on the orientation of rhodopsin. Science, N. Y. 156, 536.
Cone, R. A. & Cobbs, W. H. III (1969). Rhodopsin cycle in the living eye of the rat. Nature, Land. 221, 820822.
Dowling, J. E. & Werblin, F. S. (1969). Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. J. Neurophysiol. 32, 315338.
Eccles, J. C. (1964). The Physiology of Synapses. Berlin: Springer–Verlag.
Frank, R. N. & Goldsmith, T. H. (1967). Effects of cardiac glycosides on electrical activity in the isolated retina of the frog. J. Gen. Physiol. 50, 15851606.
Furukawa, T. & Hanawa, I. (1955). Effects of some common cations on electroretinogram of the toad. Jap. J. Physiol. 5, 289300.
Granit, R. (1933). The components of the retinal action potential and their relation to the discharge in the optic nerve. J. Physiol., Lond. 77, 207240.
Granit, R. (1947). Sensory Mechanisms of the Retina. London: Oxford University Press.
Granit, R. & Helme, T. (1939). Changes in retinal excitability due to polarization and some observations on the relation between the processes in retina and nerve. J. Neurophysiol. 2, 556565.
Granit, R. & Riddell, H. A. (1934). The electrical responses of light- and dark-adapted frog's eyes to rhythmic and continuous stimuli, J. Physiol., Lond. 81, 128.
Hagins, W. A. (1965). Electrical signs of information flow in photoreceptors. Cold Spring Harbor Symp. quant. Biol. 30, 403417.
Hagins, W. A. & McGaughy, R. E. (1967). Molecular and thermal origins of fast photoelectric effects in the squid retina. Science, N.Y. 157, 813816.
Hamasaki, D. I. (1963). The effect of sodium ion concentration on the electroretinogram of the isolated retina of the frog. J. Physiol., Lond. 167, 156168.
Hanitzsch, R. & Trifonow, J. (1968). Intraretinal abgeleitete ERG-Komponenten der isolierten Kaninchennetzhaut. Vision Res. 8, 14451455.
Holmgren, F. (1865). Method att objectivera effecten av ljusintryck pa retina. Upsala Läkaref. förh. 1, 177191.
Kaneko, A. & Hashimoto, H. (1967). Recording site of the single cone response determined by an electrode marking technique. Vision Res. 7, 847851.
Laufer, M., Svaetichin, G., Mitarai, G., Fatehchand, R., Vallecalle, E. & Villegas, J. (1961). The effect of temperature, carbon dioxide and ammonia on the neuron-glia unit. In The Visual System: Neurophysiology and Psychophysics. (Jung, R. and Kornhuber, H., eds), pp. 457463. Berlin: Springer.
Liebman, P. A. (1962). In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161178.
Marks, W. B. (1965). Visual pigments of single goldfish cones. J. Physiol., Lond. 178, 1432.
Müller-Limmroth, W. & Blümer, H. (1957). Ueber den Einfluss von Monojodessigsäure, Natriumazid und Natriumjodat auf das Ruhepotential und das Electroretinogramm des Froschauges. Z. Biol. 109, 420439.
Murakami, M. & Kaneko, A. (1966). Differentiation of P III subcomponents in cold-blooded vertebrate retinas. Vision Res. 6, 627636.
Noell, W. K. (1953). Studies on the Electrophysiology and the Metabolism of the Retina. School of Aviation Med. Rep. no. 1. Randolph Field, Texas.
Oikawa, T., Ogawa, T. & Motokawa, K. (1959). Origin of so-called cone action potential. J. Neurophysiol. 22, 102111.
Pak, W. L. (1965). Some properties of the early electrical response in the vertebrate retina. Cold Spring Harb. Symp. quant. Biol. 30, 493499.
Pak, W. L. & Cone, R. A. (1964). Isolation and identification of the initial peak of the early receptor potential. Nature, Lond. 204, 836838.
Penn, R. D. & Hagins, W. A. (1969). Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature, Lond. 223, 201215.
Purple, R. E. & Dodge, F. A. (1965). Interaction of excitation and inhibition in the eccentric cell in the eye of Limulus. Cold Spring Harb. Symp. quant. Biol. 30, 529537.
Rushton, W. A. H. (1959). A theoretical treatment of Fuortes's observations upon eccentric cell activity in Limulus. J. Physiol., Lond. 148, 2938.
Schultze, M. (1866). Zur Anatomie und Physiologie der Retina. Arch. mikr. Anal. 2, 175286.
Sillman, A. J., Ito, H. & Tomita, T. (1969 a). Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res. 9, 14351442.
Sillman, A. J., Ito, H. & Tomita, T. (1969 b). Studies on the mass receptor potential of the isolated frog retina. II, On the basis of the ionic mechanism. Vision Res. 9, 14431451.
Sjöstrand, F. S. (1961). Electron microscopy of the retina. In The Structure of the Eye. (Smelser, G. K., ed.), pp. 128. New York: Academic Press.
Skou, J. C. (1965). Enzymic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45, 596617.
Svaetichin, G. (1953). The cone action potential. Acta Physiol. Scand. 29, Suppl. 106, 565600.
Svaetichin, G., Negishi, K. & Fatehchand, R. (1965). Cellular mechanisms of a Young-Hering visual system. In Colour Vision: Ciba Foundation Symposium. (de Reuck, A. V. S. and Knight, J., eds.), pp. 178207. Boston: Little, Brown and Company.
Tansley, K. (1964). The gecko retina. Vision Res. 4, 3337.
Therman, P. O. (1938). The neurophysiology of the retina in the light of chemical methods of modifying its excitability. Acta Soc. Sci. Fenn. N.S.B. II, No. 1., Helsingfors.
Tomita, T. (1962). A compensation circuit for coaxial and double-barreled microelectrodes. IRE Trans. Biotned. Electron. 9, 138141.
Tomita, T. (1963). Electrical activity in the vertebrate retina. J. Opt. Soc. Am. 53, 4957.
Tomita, T. (1964). Mechanisms subserving color coding in the vertebrate retina. Abstr. 11, C III, 1, IOPAB Int. Biophys. Meeting,Paris-Orsay. Abstr. 11, C III, 1,
Tomita, T. (1965). Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb. Symp. quant. Biol. 30, 559566.
Tomita, T. & Kaneko, A. (1965). An intracellular coaxial microelectrode. Its construction and application. Med. Electron. Biol. Engng 3, 367376.
Tomita, T., Kaneko, A., Murakami, M. & Pautler, E. L. (1967). Spectral response curves of single cones in the carp. Vision Res. 7, 519531.
Tomita, T., Murakami, M., Hashimoti, Y. & Sasaki, Y. (1961). Electrical activity of single neurons in the frog's retina. In The Visual System: Neurophysiology and Psychophysics. (Jung, R. and Kornhuber, H., eds.), pp. 2431. Berlin: Springer.
Tomita, T. & Torihama, Y. (1956). Further study on the intraretinal action potentials and on the site of ERG generation. Jap. J. Physiol. 6, 118136.
Toyoda, J., Nosaki, H. & Tomita, T. (1969). Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 9, 453463.
Toyoda, J., Hashimoto, H., Anno, H. & Tomita, T. (1970). The rod response in the frog as studied by intracellular recording. (In preparation.)
Trifonow, Ju. A. (1968). Study of synaptic transmission between photoreceptors and horizontal cells by means of electric stimulation of the retina (in Russian). Biophysica, Moscow 13, N 5.
Walls, G. L. (1934). The reptilian retina. Am. J. Ophthal. 17, 892915.
Werblin, F. S. (1968). Functional organization of the vertebrate retina studied by intracellular recording from the retina of the mudpuppy, Necturus maculosus. Doctoral dissertation: The Johns Hopkins University, Baltimore.
Werblin, F. S. & Dowling, J. E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339355.
Yonemura, D. & Hatta, M. (1966). Localization of the minor components of the frog's electroretinogram. Jap. J. Ophthal. 10, Suppl. (Proc. 4th ISCERG Symp.), 149154.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed