Skip to main content

Lysozyme's lectin-like characteristics facilitates its immune defense function

  • Ruiyan Zhang (a1) (a2), Lisha Wu (a3), Thomas Eckert (a4) (a5), Monika Burg-Roderfeld (a5), Miguel A. Rojas-Macias (a5), Thomas Lütteke (a5), Vadim B. Krylov (a6), Dmitry A. Argunov (a6), Aritreyee Datta (a7), Philipp Markart (a8) (a9), Andreas Guenther (a10), Bengt Norden (a3), Roland Schauer (a9), Anirban Bhunia (a7), Mushira Abdelaziz Enani (a11), Martin Billeter (a12), Axel J. Scheidig (a2), Nikolay E. Nifantiev (a6) and Hans-Christian Siebert (a1)...


Interactions between human lysozyme (HL) and the lipopolysaccharide (LPS) of Klebsiella pneumoniae O1, a causative agent of lung infection, were identified by surface plasmon resonance. To characterize the molecular mechanism of this interaction, HL binding to synthetic disaccharides and tetrasaccharides representing one and two repeating units, respectively, of the O-chain of this LPS were studied. pH-dependent structural rearrangements of HL after interaction with the disaccharide were observed through nuclear magnetic resonance. The crystal structure of the HL-tetrasaccharide complex revealed carbohydrate chain packing into the A, B, C, and D binding sites of HL, which primarily occurred through residue-specific, direct or water-mediated hydrogen bonds and hydrophobic contacts. Overall, these results support a crucial role of the Glu35/Asp53/Trp63/Asp102 residues in HL binding to the tetrasaccharide. These observations suggest an unknown glycan-guided mechanism that underlies recognition of the bacterial cell wall by lysozyme and may complement the HL immune defense function.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Lysozyme's lectin-like characteristics facilitates its immune defense function
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Lysozyme's lectin-like characteristics facilitates its immune defense function
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Lysozyme's lectin-like characteristics facilitates its immune defense function
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Authors for correspondence: M. Billeter, Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden. Tel: +46 31 7863925; Fax: +46 31 7862599; Email:
A. J. Scheidig, Department of Structural Biology, Institute of Zoology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany. Tel: +49 431 8804286; Fax: +49 431 8804929; Email:
N. E. Nifantiev, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation. Tel: +7 499 1358784; Fax: +7 499 1358784; Email:
H-C. Siebert, RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany. Tel.: +49 431 66878443; Fax: +49 431 56 06 295; Email:
Hide All
Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L.-W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C. & Zwart P. H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D: Biological Crystallography 66(2), 213221.
Akinbi H. T., Epaud R., Bhatt H. & Weaver T. E. (2000). Bacterial killing is enhanced by expression of lysozyme in the lungs of transgenic mice. Journal of Immunology 165, 57605766.
Bartels C., Xia T. H., Billeter M., Güntert P. & Wüthrich K. (1995). The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. Journal of Biomolecular NMR 6, 110.
Bhunia A., Vivekanandan S., Eckert T., Burg-Roderfeld M., Wechselberger R., Romanuka J., Bächle D., Kornilov A. V., von der Lieth C.-W., Jiménez-Barbero J., Nifantiev N. E., Schachner M., Sewald N., Lütteke T., Gabius H.-J. & Siebert H.-Ch. (2010). Why structurally different cyclic peptides can be glycomimetics of the HNK-1 carbohydrate antigen. Journal of the American Chemical Society 132, 96105.
Boehr D. D., McElheny D., Dyson H. J. & Wright P. E. (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 16381642.
Chipman D. M. & Sharon N. (1969). Mechanism of lysozyme action. Science 165, 454465.
Claridge T. (2009). Software review of MNova: NMR data processing, analysis, and prediction software. Journal of Chemical Information and Modeling 49, 11361137.
Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J. & Bax A. D. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR 6, 277293.
DeLano W. L. (2002). The PyMOL molecular graphics system. (DeLano Scientific, San Carlos, California, USA, 2002).
Diehl C., Engström O., Delaine T., Håkansson M., Genheden S., Modig K., Leffler H., Ryde U., Nilsson U. J. & Akke M. (2010). Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. Journal of the American Chemical Society 132, 1457714589.
Emsley P., Lohkamp B., Scott W. G. & Cowtan K. (2010). Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography 66, 486501.
Enani M. A. (2015). Antimicrobial resistance. Insights from the declaration of world alliance against antibiotic resistance. Saudi medical Journal 36, 1112.
Enani M. A. & El-Khizzi N. A. (2012). Community acquired Klebsiella pneumoniae, K1 serotype. Invasive liver abscess with bacteremia and endophthalmitis. Saudi medical Journal 33, 782786.
Gupta A. (2002). Hospital-acquired infections in the neonatal intensive care unit-Klebsiella pneumoniae . Seminars in Perinatology 26, 340345.
Harata K., Abe Y. & Muraki M. (1998). Full-matrix least-squares refinement of lysozymes and analysis of anisotropic thermal motion. Proteins: Structure, Function, and Bioinformatics 30, 232243.
Kabsch W. (2010). Integration, scaling, space-group assignment and post-refinement. Acta Crystallographica Section D: Biological Crystallography 66(2), 133144.
Kar R. K., Gazova Z., Bednarikova Z., Mroue K. H., Ghosh A., Zhang R., Ulicna K., Sieber H.-Ch., Nifantiev N. E. & Bhunia A. (2016). Evidence for Inhibition of lysozyme amyloid fibrillization by peptide fragments from human lysozyme: a combined spectroscopy, microscopy, and docking study. Biomacromolecules 17, 19982009.
Koradi R., Billeter M. & Wüthrich K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. Journal of Molecular Graphics 14, 5155.
Krylov V. B., Argunov D. A., Vinnitskiy D. Z., Gerbst A. G., Ustyuzhanina N. E., Dmitrenok A. S. & Nifantiev N. E. (2016). The pyranoside-into-furanoside rearrangement of alkyl glycosides: scope and limitations. Synlett 27, 16591664.
Krylov V. B., Argunov D. A., Vinnitskiy D. Z., Verkhnyatskaya S. A., Gerbst A. G., Ustyuzhanina N. E., Dmitrenok A. S., Huebner J., Holst O., Siebert H.-Ch & Nifantiev N. E. (2014). Pyranoside-into-furanoside rearrangement: new reaction in carbohydrate chemistry and its application in oligosaccharide synthesis. Chemistry–A European Journal 20, 1651616522.
Kuramitsu S., Ikeda K., Hamaguchi K., Fujio H., Amano T., Shiro M. I. W. A. & Nishina T. (1974). Ionization constants of Glu 35 and Asp 52 in hen, turkey, and human lysozymes. Journal of Biochemistry 76, 671683.
Laskowski R. A. & Swindells M. B. (2011). LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling 51, 27782786.
Lee-Huang S., Maiorov V., Huang P. L., Ng A., Lee H. C., Chang Y. T., Kallenbach N., Huang P. L. & Chen H. C. (2005). Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity. Biochemistry 44, 46484655.
Lütteke T., Frank M. & von der Lieth C. W. (2005). Carbohydrate structure suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Research 33, D242D246.
Markart P., Korfhagen T. R., Weaver T. E. & Akinbi H. T. (2004). Mouse lysozyme M is important in pulmonary host defense against Klebsiella pneumoniae infection. American Journal of Respiratory and Critical Care Medicine 169, 454458.
Masschalck B. & Michiels C. W. (2003). Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Critical Reviews in Microbiology 29, 191214.
Muraki M., Harata K., Sugita N. & Sato K. I. (1996). Origin of carbohydrate recognition specificity of human lysozyme revealed by affinity labeling. Biochemistry 35, 1356213567.
Murshudov G. N., Skubák P., Lebedev A. A., Pannu N. S., Steiner R. A., Nicholls R. A., Winn M. D., Long F. & Vagin A. A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D: Biological Crystallography 67, 355367.
Ohno N. & Morrison D. C. (1989 a). Lipopolysaccharide interactions with lysozyme differentially affect lipopolysaccharide immunostimulatory activity. European Journal of Biochemistry 186, 629636.
Ohno N. & Morrison D. C. (1989 b). Lipopolysaccharide interaction with lysozyme. Binding of lipopolysaccharide to lysozyme and inhibition of lysozyme enzymatic activity. Journal of Biological Chemistry 264, 44344441.
Osserman E. F., Klockars M. A. T. T. I., Halper J. A. M. E. S. & Fischel R. E. (1973). Effects of lysozyme on normal and transformed mammalian cells. Nature 243, 331335.
Refaee M., Tezuka T., Akasaka K. & Williamson M. P. (2003). Pressure-dependent changes in the solution structure of hen egg-white lysozyme. Journal of Molecular Biology 327, 857865.
Rojas-Macias M. A. & Lütteke T. (2015). Statistical analysis of amino acids in the vicinity of carbohydrate residues performed by GlyVicinity. Methods in Molecular Biology 1273, 215226.
Shin H. J., Lee H., Park J. D., Hyun H. C., Sohn H. O., Lee D. W. & Kim Y. S. (2007). Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins. Molecules and Cells 24, 119124.
Siwicki A. K., Klein P., Morand M., Kiczka W. & Studnicka M. (1998). Immunostimulatory effects of dimerized lysozyme (KLP-602) on the nonspecific defense mechanisms and protection against furunculosis in salmonids. Veterinary Immunology and Immunopathology 61, 369378.
Song H., Inaka K., Maenaka K. & Matsushima M. (1994). Structural changes of active site cleft and different saccharide binding modes in human lysozyme co-crystallized with hexa-N-acetyl-chitohexaose at pH 4·0. Journal of Molecular Biology 244, 522540.
Travis S. M., Conway B. A. D., Zabner J., Smith J. J., Anderson N. N., Singh P. K., Greenberg E. P. & Welsh M. J. (1999). Activity of abundant antimicrobials of the human airway. American Journal of Respiratory Cell and Molecular Biology 20, 872879.
Tsvetkov Y. E., Burg-Roderfeld M., Loers G., Ardá A., Sukhova E. V., Khatuntseva E. A., Grachev A. A., Chizhov A. O., Siebert H.-Ch., Schachner M., Jiménez-Barbero J. & Nifantiev N. E. (2012). Synthesis and molecular recognition studies of the HNK-1 trisaccharide and related oligosaccharides. The specificity of monoclonal anti-HNK-1 antibodies as assessed by surface plasmon resonance and STD NMR. Journal of the American Chemical Society 134, 426435.
Ulrich E. L., Akutsu H., Doreleijers J. F., Harano Y., Ioannidis Y. E., Lin J., Livny M., Mading S., Maziuk D., Miller Z., Nakatani E., Schulte C. F., Tolmie D. E., Wenger R. K., Yao H. & Markley J. L. (2008). BioMagResBank. Nucleic Acids Research 36, D402D408.
Vagin A. & Teplyakov A. (1997). MOLREP: an automated program for molecular replacement. Journal of Applied Crystallography 30, 10221025.
Verkhnyatskaya S. A., Krylov V. B. & Nifantiev N. E. (2017). Pyranoside-into-furanoside rearrangement of 4-pentenyl glycoside in the synthesis of tetrasaccharide related to galactan I of Klebsiella pneumoniae . European Journal of Organic Chemistry 2017, 710718.
Vranken W. F., Boucher W., Stevens T. J., Fogh R. H., Pajon A., Llinas M., Ulrich E. L., Markley J. L., Ionides J. & Laue E. D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins: Structure, Function, and Bioinformatics 59, 687696.
Winn M. D., Ballard C. C., Cowtan K. D., Dodson E. J., Emsley P., Evans P. R., Keegan R. M., Krissinel E. B., Leslie A. G. W., McCoy A., McNicholas S. J., Murshudov G. N., Pannu N. S., Potterton E. A., Powell H. R., Read R. J., Vagin A. & Wilson K. S. (2011). Overview of the CCP4 suite and current developments. Acta Crystallographica Section D: Biological Crystallography, 67, 235242.
Young A. C., Tilton R. F. & Dewan J. C. (1994). Thermal expansion of hen egg-white lysozyme: comparison of the 1·9 Å resolution structures of the tetragonal form of the enzyme at 100 K and 298 K. Journal of Molecular Biology, 235, 302317.
Young N. M., Gidney M. A. J., Gudmundsson B. E., MacKenzie C. R., To R., Watson D. C. & Bundle D. R. (1999). Molecular basis for the lack of mimicry of Brucella polysaccharide antigens by Ab2γ antibodies. Molecular Immunology 36, 339347.
Zhang R., Eckert T., Lutteke T., Hanstein S., Scheidig A. J., Bonvin A., Nifantiev N. E., Kozar T., Schauer R., Enani M. A. & Siebert H. C. (2016). Structure-function relationships of antimicrobial peptides and proteins with respect to contact molecules on pathogen surfaces. Current Topics in Medicinal Chemistry 16, 8998.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quarterly Reviews of Biophysics
  • ISSN: 0033-5835
  • EISSN: 1469-8994
  • URL: /core/journals/quarterly-reviews-of-biophysics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Zhang supplementary material
Zhang supplementary material

 Word (1.6 MB)
1.6 MB


Altmetric attention score

Full text views

Total number of HTML views: 20
Total number of PDF views: 195 *
Loading metrics...

Abstract views

Total abstract views: 236 *
Loading metrics...

* Views captured on Cambridge Core between 30th May 2017 - 18th December 2017. This data will be updated every 24 hours.