Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-gsnzm Total loading time: 0.393 Render date: 2022-09-26T11:03:41.555Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Exposure age chronology of the last glaciation in the eastern Pyrenees

Published online by Cambridge University Press:  20 January 2017

Magali Delmas
Affiliation:
Médi-Terra, Université de Perpignan, 52 av. Paul Alduy, 66860 Perpignan, France UMR CNRS 8591, Université de Paris 7, Case 7001, 2 place Jussieu, 75251 Paris cedex 05, France
Yanni Gunnell*
Affiliation:
UMR CNRS 8591, Université de Paris 7, Case 7001, 2 place Jussieu, 75251 Paris cedex 05, France
Régis Braucher
Affiliation:
CEREGE, CNRS UMR 6635, BP 80, 13545 Aix-en-Provence cedex 04, France
Marc Calvet
Affiliation:
Médi-Terra, Université de Perpignan, 52 av. Paul Alduy, 66860 Perpignan, France
Didier Bourlès
Affiliation:
CEREGE, CNRS UMR 6635, BP 80, 13545 Aix-en-Provence cedex 04, France
*
*Corresponding author.E-mail address:gunnell@univ-paris-diderot.fr (Y. Gunnell).

Abstract

We present a chronology of ice recession in the eastern Pyrenees based onin situ-produced10Be data obtained from the Têt paleoglacier complex. The sampling strategy is based on the relative chronology provided by a detailed geomorphological map of glacial landforms. Results indicate that the last maximum ice advance occurred late (i.e., during Marine Isotope Stage 2) compared to the chronology currently established for the rest of the Pyrenees. Despite debatable evidence for a glacial readvance during the Oldest Dryas stade, ice-cap melt-out was rapid, residual cirque glaciers having disappeared by the Allerød interstade. This is consistent both with North Atlantic excursions established by the Greenland ice cores and paleoenvironmental data for the region. The rapid response of the east-Pyrenean ice cap to temperature variations is primarily linked to its small size compared to larger Pyrenean ice fields, to the dry Mediterranean climate, and to topography-related nonlinearities in which a small vertical rise in equilibrium line altitude generates a large change in ice mass. Possible sources of age uncertainty are discussed in the context of sampling design for single-nuclide (10Be) dating of landform sequences in formerly glaciated landscapes.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrieu, V., (1987). Le paléoenvironnement du piémont nord-pyrénéen occidental de 27 000 BP au Postglaciaire : la séquence d’Estarrès (Pyrénées Atlantiques, France) dans le bassin glaciaire d’Arudy. Comptes-Rendus de l’Académie des Sciences, Série II 304, 103108.Google Scholar
Andrieu, V., Hubschman, J., Jalut, G., Hérail, G., (1988). Chronologie de la déglaciation des Pyrénées françaises Dynamique de sédimentation et contenu pollinique des paléolacs : application à l’interprétation du retrait glaciaire. Bulletin de l’Association Française pour l’Étude du Quaternaire 34/35, 5567.CrossRefGoogle Scholar
Bakalowicz, M., Sorriaux, P., Ford, D.C., (1984). Quaternary glacial events in the Pyrenees from U-series dating of speleothems in the Niaux–Lombrives–Sabat caves, Ariège, France. Norsk Geografisk Tidsskrift 38, 193197.CrossRefGoogle Scholar
Benn, D.I., Evans, D.J.A., (1998). Glaciers & Glaciation. Arnold, London., 734 pp.Google Scholar
Bintz, P., Evin, J., (2002). Evènements bio-climatiques et peuplements du Tardiglaciaire au début de l’Holocène dans les Alpes du Nord françaises. Quaternaire 13, 279287.CrossRefGoogle Scholar
Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S.J., Knudsen, K.L., Lowe, J.J., Wolhfarth, B., Intimate Members, , (1998). An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, 283292.3.0.CO;2-A>CrossRefGoogle Scholar
Bordonau i Ibern, J., (1992). Els complexos glacio-lacustres relacionats amb el darrer cicle glacial als pirineus. Geoforma édiciones, Logroño 251 pp.Google Scholar
Bordonau, J., Vilaplana, J.M., Fontugne, M., (1993). The glaciolacustrine complex of Llestui (Central Southern Pyrenees): a key-locality for the chronology of the last glacial cycle in the Pyrenees. Comptes-Rendus de l’Académie des Sciences, Série II 316, 807813.Google Scholar
Briner, J.P., Miller, G.H., Davis, P.T., Bierman, P.R., Caffee, M., (2003). Last Glacial Maximum ice sheet dynamics in Arctic Canada inferred from young erratics perched on ancient tors. Quaternary Science Reviews 22, 437444.CrossRefGoogle Scholar
Calvet, M., (1996). Morphogenèse d’une montagne méditerranéenne : les Pyrénées orientales. Mémoire BRGM 255, Orléans. 1177.Google Scholar
Calvet, M., (2004). The Quaternary glaciation of the Pyrenees. Ehlers, J., Gibbard, P., Quaternary Glaciations — Extent and Chronology, Part I: Europe. Elsevier, Amsterdam., 119128.Google Scholar
Chueca Cίa, J., Julián Andrés, A., Saz Sánchez, M.A., Creus Novau, J., López Moreno, J.I., (2004). Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 68, 167182.Google Scholar
Delmas, M., (2005). La déglaciation dans le massif du Carlit (Pyrénées orientales): approches géomorphologique et géochronologique nouvelles. Quaternaire 16, 4555.CrossRefGoogle Scholar
Dunne, J., Elmore, D., Muzikar, P., (1999). Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on slopes surfaces. Geomorphology 27, 311.CrossRefGoogle Scholar
Garcίa-Ruiz, J.M., Valero-Garcés, B.L., Martί-Bono, C., González-Sampériz, P., (2003). Asynchroneity of maximum glacier advances in the central Spanish Pyrenees. Journal of Quaternary Science 18, 6172.CrossRefGoogle Scholar
Gellatly, A.F., Grove, J.M., Switsur, V.R., (1992). Mid-Holocene glacial activity in the Pyrenees. The Holocene 2, 266270.CrossRefGoogle Scholar
González-Sampériz, P., Valero-Garcès, B.L., Moreno, A., Jalut, G., Garcίa-Ruiz, J.M., Martί-Bono, C., Delgado-Huertas, A., Navas, A., Otto, T., Deboubat, J.J., (2006). Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence. Quaternary Research. 66, 3852.CrossRefGoogle Scholar
Guiter, F., Andrieu-Ponel, V., Digerfeldt, G., Reille, M., de Beaulieu, J.-L., Ponel, P., (2005). Vegetation history and lake-level changes from the Younger Dryas to the present in eastern Pyrenees (France): pollen, plant macrofossils and lithostratigraphy from Lake Racou (2000 m a.s.l.). Vegetation History and Archeobotany 14, 99118.CrossRefGoogle Scholar
Hérail, G., Jalut, G., (1986). L’obturation de Sost (Haute-Garonne): données nouvelles sur le paléo-environnement de la phase de progression du glacier würmien dans les Pyrénées centrales. Comptes-Rendus de l’Académie des Sciences, Série II 303, 743748.Google Scholar
Ivy-Ochs, S., Schafer, J., Kubik, P.W., Synal, H.A., Schluchter, C., (2004). Timing of the deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologicae Helvetiae 97, 4755.CrossRefGoogle Scholar
Ivy-Ochs, S., Kerschner, H., Kubik, P.W., Schluchter, C., (2005). Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. Journal of Quaternary Science 21, 115130.CrossRefGoogle Scholar
Ivy-Ochs, S., Kerschner, H., Reuther, A., Maich, M., Sailer, R., Schaefer, J., Kubik, P.W., Synal, H.A., Schlüchter, C., (2006). The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenics 10Be, 26Al, 36Cl, and 21Ne. Siame, L., Bourlès, D.L., Brown, E.T., In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes. Geological Society of America Special Paper 415, 4360.Google Scholar
Jalut, G., Andrieu, V., Delibrias, G., Fontugne, M., Pagès, M., (1988). Paleoenvironment of the valley of Ossau (Western French Pyrenees) during the last 27,000 years. Pollens et Spores 30, 357394.Google Scholar
Jalut, G., Montserrat, J., Fontugne, M., Delibrias, G., Vilaplana, J.M., Julia, R., (1992). Glacial to interglacial vegetation changes in the northern and southern Pyrenees: deglaciation, vegetation cover and chronology. Quaternary Science Reviews 11, 449480.CrossRefGoogle Scholar
Jiménez Sánchez, M., Farias Arquer, P., (2002). New radiometric and geomorphologic evidences of a last glacial maximum older than 18 ka in SW European mountains: the example of Redes Natural Park (Cantabrian mountains, NW spain). Geodinamica Acta 15, 93101.Google Scholar
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A.E., White, J., (2001). Oxygen isotopes and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye 3, GRIP, GISP2, Renland and North GRIP. Journal of Quaternary Science 16, 299307.CrossRefGoogle Scholar
Lowe, J.J., Hoek, W.Z., Intimate Group (2001). Interregional correlation of palaeoclimatic records for the Last Glacial–Interglacial Transition: a protocol for improved precision recommended by the INTIMATE project group. Quaternary Science Reviews 20, 11751187.CrossRefGoogle Scholar
Mardonnes, M., Jalut, G., (1983). La tourbière de Biscaye (alt. 409 m, hautes Pyrénées) : approche paléoécologique des 45 000 dernières années. Pollen et Spores 25, 163211.Google Scholar
Martί-Bono, C., González-Sampériz, P., Valero-Garcès, B., Garcίa-Ruiz, J.M., (2002). El depósito glaciolacustre de Linás de Broto (Pirineo aragonés) y su implicación paleoambiental. Pérez-González, A., Vegas, J., Machado, M.J., Aportaciones a la Geomorfología de España en el Inicio del Tercer Milenio. Actas de la VI Reunión Nacional de Geomorfologia: Madrid, 17–20 semtembre 2000 1, Publicaciones del instituto geológico y minero de españa, serie: Geología, Madrid., 7783.Google Scholar
Middelton, R., Brown, L., Dezfouly-Arjomandy, B., Klein, J., (1993). On 10Be standards and the half-life of 10Be. Nuclear Instruments Methods Physics Research B 82, 399403.CrossRefGoogle Scholar
Pallàs, R., Rodés, A., Braucher, R., Carcaillet, J., Ortuno, M., Bordonau, J., Bourlès, D., Vilaplana, J.M., Masana, E., Santanach, P., (2006). Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south-central Pyrenees. Quaternary Sciences Reviews 25, 29372963.CrossRefGoogle Scholar
Peña, J.L., Sancho, C., Lewis, C., McDonald, E., Rhodes, E., (2004). Datos cronológicos de las morrenas terminales del glaciar del Gállego y su relación con las terrazas fluvioglaciares (Pirineo de Huesca). Peña, J.L., Longares, L.A., Sánchez, M., Geografia Física de Aragón. Aspectos generales y temáticos. Universitad de Zaragoza e Institución fernando el Católico, Zaragoza., 7184.Google Scholar
Putkonen, J., Swanson, T., (2003). Accuracy of cosmogenic ages for moraines. Quaternary Research. 59, 255261.CrossRefGoogle Scholar
Reille, M., Andrieu, V., (1993). Variations de la limite supérieure des forêts dans les Pyrénées (France) pendant le Tardiglaciaire. Comptes-Rendus de l’Académie des Sciences, Série D 272, 31123115.Google Scholar
Reille, M., Lowe, J.J., (1993). A re-evaluation of the vegetation history of the eastern Pyrenees (France) from the end of the last glacial to the present. Quaternary Science Reviews 12, 4777.CrossRefGoogle Scholar
Reille, M., Andrieu, V., (1995). The late Pleistocene and Holocene in the Lourdes basin, Western Pyrenees, France: new pollen analytical and chronological data. Vegetation History and Archaeobotany 4, 121.CrossRefGoogle Scholar
Sancho, C., Peña, J.L., Lewis, C., McDonald, E., Rhodes, E., (2003). Preliminary dating of glacial and fluvial deposits in the Cinca River Valley (NE Spain): chronological evidences for the Glacial Maximum in the Pyrenees?. Zapata, M.B., Quaternary Climatic Changes and Environmental Crises in the Mediterranean Region. Universidad de Alcalá de Henares, 169173.Google Scholar
Schildgen, T.F., Phillips, W.M., Purves, R.S., (2005). Simulation of snow shielding corrections for cosmogenic nuclide surface exposure studies. Geomorphology 64, 6785.CrossRefGoogle Scholar
Schoeneich, P., (2003). Que s’est-il passé pendant la première partie du Tardiglaciaire? Indices d’un changement écologique majeur dès 17–18.000 cal BP. Preistoria Alpina 39, 917.Google Scholar
Sorriaux, P., (1981). Etude et datation de remplissages karstiques : nouvelles données sur la paléogéographie quaternaire de la région de Tarascon (Pyrénées ariégeoises). Comptes-Rendus de l’Académie des Sciences, Série II 293, 703706.Google Scholar
Stone, J.O., (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323759.CrossRefGoogle Scholar
Taillefer, F., (1969). Les glaciations des Pyrénées. In : Actes VIII° congrès international INQUA, Bulletin de l’Association Française pour l’Etude du Quaternaire, Supplement 1932.Google Scholar
Turu i Michels, V., (2002). Análisis secuencial del delta de Erts. estratigrafía de un valle glaciar obturado intermitentemente. Relación con en último ciclo glaciar. Valle de Arinsal, Pirineos Orientales. In: Estudios recientes (2000–2002) en geomorfología, patrimonio, montaña y dinámica territorial, SEG—Departamento de geografía UVA, Valladolid 555574.Google Scholar
Viers, G., (1968). La carte du relief glaciaire des Pyrénées. Feuille de Mont-Louis au 1/50,000e (Pyrénées orientales). Revue Géographique des Pyrénées et du Sud-Ouest 39, 429434.CrossRefGoogle Scholar
Vilaplana, J.M., (1983). Quaternary Glacial Geology of Alta Ribagorça basin (central southern Pyrenees). Acta Geologica Hispanica 18, 217233.Google Scholar
Vilaplana, J.M., Bordonau, J., (1989). Dynamique sédimentaire lacustre de marge glaciaire : le paléolac de Llestui (Noguera Ribagorçana, Versant sud des pyrénées). Bulletin de l’Association Française pour l’Étude du Quaternaire 40, 219224.CrossRefGoogle Scholar
Walker, M.J.C., Björk, S., Lowe, J.J., Cwynar, L., Johnsen, S., Knudsen, K.L., Wohlfarth, B., Intimate Group (1999). Isotopic ‘event’ in the GRIP ice-core: a stratotype for the Late Pleistocene. Quaternary Science Reviews 18, 11431150.CrossRefGoogle Scholar
Zreda, M.G., Phillips, F.M., (1994). Cosmogenic 36Cl accumulation in unstable landforms. Water Resources Research 30, 31273136.CrossRefGoogle Scholar
Supplementary material: PDF

Delmas et al. Supplementary Material

Supplementary Material

Download Delmas et al. Supplementary Material(PDF)
PDF 413 KB
79
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Exposure age chronology of the last glaciation in the eastern Pyrenees
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Exposure age chronology of the last glaciation in the eastern Pyrenees
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Exposure age chronology of the last glaciation in the eastern Pyrenees
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *