Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T13:50:41.966Z Has data issue: false hasContentIssue false

Geochemical and mineralogical characterization of sediments from Lake Futalaufquen (42.8°S, Andean Patagonia) to evaluate their potential as paleoclimatic proxies

Published online by Cambridge University Press:  03 June 2020

Romina Daga*
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400Bariloche, Argentina Centro Científico Tecnológico CONICET, Patagonia Norte, Argentina
Sergio Ribeiro Guevara
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400Bariloche, Argentina
Andrea Rizzo
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400Bariloche, Argentina Centro Científico Tecnológico CONICET, Patagonia Norte, Argentina
Polona Vreča
Affiliation:
Jožef Stefan Institute, 1000Ljubljana, Slovenia
Sonja Lojen
Affiliation:
Jožef Stefan Institute, 1000Ljubljana, Slovenia University of Nova Gorica, 5000Nova Gorica, Slovenia
Natalia Williams
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400Bariloche, Argentina Centro Científico Tecnológico CONICET, Patagonia Norte, Argentina
Telma Musso
Affiliation:
Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET – UNCo), Neuquén, Argentina
Valeria León
Affiliation:
Facultad de Ingeniería, UNCo, Neuquén, Argentina
Daniel Poiré
Affiliation:
Centro de Investigaciones Geológicas (UNLP-CONICET), Diagonal 113 N°275, 1900La Plata, Argentina
Marina Arcagni
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400Bariloche, Argentina Centro Científico Tecnológico CONICET, Patagonia Norte, Argentina
María Arribére
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400Bariloche, Argentina Instituto Balseiro, UNCu, Argentina
*
*Corresponding author at: Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400 Bariloche, Argentina. E-mail address: romina@cab.cnea.gov.ar

Abstract

Lake sediments are key archives for paleoenvironmental investigation as they provide continuous records of the depositional history of the lake and its watershed. Lake Futalaufquen (42.8°S) is an oligotrophic waterbody located in Los Alerces National Park in the Andes of northern Patagonia, South America. A sedimentary sequence covering 1600 years was recovered to analyze the potential for paleoenvironmental reconstructions of the last millennia. Integration of different geochemical and mineralogical parameters and comparison with climatic reconstructions from other Patagonian records give clues for the identification of a warm period around AD 800–1000, associated with the Medieval Climatic Anomaly. The high frequency of tephra layers beginning in the mid-sixteenth century precludes identification of the Little Ice Age, recorded in northern Patagonia as a cold period from the fourteenth to the eighteenth century. Furthermore, the parameters analysed do not provide evidence of late-twentieth-century global warming. However, Zn deposition, a long-distance atmospheric transport process of anthropogenic origin, was identified during the last century.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, M., Anchukaitis, K., Asrat, A., Borgaonkar, H., Braida, M., Buckley, B., Büntgen, U., et al. , 2013. Continental-scale temperature variability during the past two millennia. Nature Geoscience 6, 339346. https://doi.org/10.1038/ngeo1797.Google Scholar
Arcagni, M., Campbell, L., Arribére, M., Kyser, K., Klassen, K., Casaux, R., Miserendino, M., Ribeiro Guevara, S., 2013. Food web structure in a double–basin ultra–oligotrophic lake in Northwest Patagonia, Argentina, using carbon and nitrogen stable isotopes. Limnologica 43, 131142.CrossRefGoogle Scholar
Arcagni, M., Rizzo, A., Campbell, L., Arribére, M., Juncos, R., Reissig, M., Kyser, K., Barriga, J., Battini, M., Ribeiro Guevara, S., 2015. Stable isotope analysis of trophic structure, energy flow and spatial variability in a large ultraoligotrophic lake in Northwest Patagonia. Journal of Great Lakes Research 41, 916952.CrossRefGoogle Scholar
Ariztegui, D., Bösch, P., Davaud, E., 2007. Dominant ENSO frequencies during the Little Ice Age in Northern Patagonia: the varved record of proglacial Lago Frías, Argentina. Quaternary International 161, 4655.CrossRefGoogle Scholar
Ayris, P., Delmelle, P., 2012. The immediate environmental effects of tephra emission. Bulletin of Volcanology 74, 19051936.CrossRefGoogle Scholar
Balseiro, E., Modenutti, B., Queimaliños, C., Reissig, M., 2007. Daphnia distribution in Andean Patagonian lakes: effect of low food quality and fish predation. Aquatic Ecology 41, 599609.CrossRefGoogle Scholar
Barros, V., Boninsegna, J., Camilloni, I., Chidiak, M., Magrín, G., Rustiucci, M., 2015. Climate change in Argentina: trends, projections, impacts and adaptation. WIREs Climate Change 6, 151169. https://doi.org/10.1002/wcc.316.CrossRefGoogle Scholar
Bertrand, S., Boës, X., Castiaux, J., Francois, C., Urrutia, R., Espinoza, C., Lepoint, G., Charlier, B., Fagel, N., 2005. Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 yr and its climatic significance. Quaternary Research 64, 163175.CrossRefGoogle Scholar
Bertrand, S., Fagel, N., 2008. Nature, origin, transport and deposition of andosol parent material in south-central Chile (36–42°S). Catena 73, 1022.CrossRefGoogle Scholar
Bertrand, S., Hughen, K., Sepúlveda, J., Pantoja, S., 2012. Geochemistry of surface sediments from the fjords of Northern Chilean Patagonia (44–47°S): Spatial variability and implications for paleoclimate reconstructions. Geochimica et Cosmochimica Acta 76, 125146.CrossRefGoogle Scholar
Bertrand, S., Hughen, K., Sepúlveda, J., Pantoja, S., 2014. Late Holocene covariability of the southern westerlies and sea surface temperature in northern Chilean Patagonia. Quaternary Science Reviews 105, 195208.CrossRefGoogle Scholar
Bertrand, S., Sterken, M., Vargas-Ramirez, L., De Batist, M., Vyverman, W., Lepoint, G., Fagel, N., 2010. Bulk organic geochemistry of sediments from Puyehue Lake and its watershed (Chile, 40°S): Implications for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 5671.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., Bennett, K.D., Reimer, P.J., 2018. Double the dates and go for Bayes — Impacts of model choice, dating density and quality on chronologies. Quaternary Science Reviews 188, 5866.CrossRefGoogle Scholar
Botrel, M., Gregory-Eaves, I., Maranger, R., 2014. Defining drivers of nitrogen stable isotopes (δ15N) of surface sediments in temperate lakes. Journal of Paleolimnology 52, 419433.CrossRefGoogle Scholar
Boutron, F.C., Görlach, U., Candelone, J.P., Bolshovy, M.A., Delmas, R.J., 1991. Decrease in anthropogenic lead, cadmium, and zinc in Greenland snows since the late 1960s. Nature 353, 153156.CrossRefGoogle Scholar
Boyle, J., 2001. Inorganic geochemical methods in paleolimnology. In Last, W.M., Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Kluwer Academic Publishers, The Netherlands, pp. 83141.Google Scholar
Brahney, J., Ballantyne, A.P., Turner, B.L., Spalding, S.A., Out, M., Neff, J.C., 2014. Separating influence of diagenesis, productivity and anthropogenic nitrogen deposition on sedimentary δ 15N variations. Organic Geochemistry 75, 140150.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Burt, R., 2004. Soil Survey Laboratory Methods Manual. Soil Survey Laboratory Investigations Report No. 42, USDA-NRCS, National Soil Survey Center, Lincoln.Google Scholar
Caetano, M., Prego, R., Vale, C., de Pablo, H., Marmolejo–Rodríguez, J., 2009. Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment. Marine Chemistry 116, 3646.CrossRefGoogle Scholar
Cook, H.E., Johnson, P., Matti, J., Zemmels, I., 1975. Methods of sample preparation and X–ray diffraction data analysis, X–ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside. In Hayes, D.E., Frakes, L.A., Barrett, P.J., Burns, D.A., Chen, P., Ford, A.B., Kaneps, A.G., Kemp, E.M., McCollum, D.W., Piper, D.J.W., Wall, R.E., Webb, P.N., Initial Reports of the Deep Sea Drilling Project, Volume 28. U.S. Government Printing Office, Washington, pp. 9991007.Google Scholar
Coplen, T.B., 2011. Guidelines and recommended terms for expression of stable–isotope–ratio and gas–ratio measurement results. Rapid Communications in Mass Spectrometry 24, 25382560.CrossRefGoogle Scholar
Coviaga, C., Rizzo, A., Pérez, P., Daga, R., Poiré, D., Cusminsky, G., Ribeiro Guevara, S., 2017. Reconstruction of the hydrologic history of a shallow Patagonian steppe lake during the past 700 yr, using chemical, geologic, and biological proxies. Quaternary Research 87, 208226.CrossRefGoogle Scholar
Crosta, X., Koç, N., 2007. Diatoms: From Micropaleontology to Isotope Geochemistry. In: Hilaire-Marcel, C., De Vernal, A. (Eds.), Developments in Marine Geology, Volume I: Proxies in Late Cenozoic Paleoceanography, Elsevier, Amsterdam, pp. 327358.Google Scholar
Daga, R., Ribeiro Guevara, S., Arribére, M., 2016b. New records of late Holocene tephras from Lake Futalaufquen (42.8°S), Northern Patagonia. Journal of South American Earth Sciences 66, 232247.CrossRefGoogle Scholar
Daga, R., Ribeiro Guevara, S., Pavlin, M., Rizzo, A., Lojen, S., Vreča, P., Horvat, M., Arribére, M., 2016a. Historical records of mercury in southern latitudes over 1600 years: Lake Futalaufquen, Northern Patagonia. Science of the Total Environment 553, 541550.CrossRefGoogle Scholar
Del Valle, H., 1998. Patagonian soils: a regional synthesis. Ecología Austral 8, 103123.Google Scholar
De Vleeschouwer, F., Vanneste, H., Mauquoy, D., Piotrowska, N., Torrejón, F., Roland, T., Stein, A., Le Roux, G., 2014. Emissions from Pre-Hispanic Metallurgy in the South American Atmosphere. PLoS ONE 9, 113.CrossRefGoogle ScholarPubMed
Fagel, N., Böes, X., Loutre, M., 2008. Climate oscillations evidenced by spectral analysis of Southern Chilean lacustrine sediments: the assessment of ENSO over the last 600 years. Journal of Paleolimnology 39, 253266.CrossRefGoogle Scholar
Ferpozzi, L., Viera, R., Butrón Ascona, F., Anielli, C., Jones, M., Casa, A., Jara, A., 2004. Datos geoquímicos multielemento y ubicación de sitios de muestreo de sedimentos de corriente, región Plan Patagonia–Comahue Geológico Minero, Hoja 4372–II Esquel, Provincia del Chubut, República Argentina. Serie Contribuciones técnicas Geoquímica 40. SEJEMAR–JICA MMAJ.Google Scholar
Fey, M., Korr, C., Maidana, N., Carrecedo, M., Corbella, H., Dietrich, S., Haberzettl, T., et al. , 2009. Palaeoenvironmental changes during the last 1600 years inferred from the sediment record of a cirque lake in southern Patagonia (Laguna Las Vizcachas, Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 281, 363375.CrossRefGoogle Scholar
Fieldes, M., Perrot, K.W., 1966. The nature of allophane in soils. part 3. Rapid field and laboratory test for allophane. New Zealand Journal of Science 9, 623629.Google Scholar
Fletcher, M., Moreno, P., 2012. Vegetation, climate and fire regime changes in the Andean region of southern Chile (38°S) covaried with centennial–scale climate anomalies in the tropical Pacific over the last 1500 years. Quaternary Science Reviews 46, 4656.CrossRefGoogle Scholar
Freslon, N., Bayon, G., Toucanne, S., Bermell, S., Bollinger, C., Chéron, S., Etoubleau, J., et al. , 2014. Rare earth elements and neodymium isotopes in sedimentary organic matter. Geochimica et Cosmochimica Acta 140, 177198.CrossRefGoogle Scholar
Freudenthal, T., Wagner, T., Wenzhöfer, T., Zabel, M., Wefer, G., 2001. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochimica et Cosmochimica Acta 65, 17951808.CrossRefGoogle Scholar
Garreaud, R., Lopez, P., Minvielle, M., Rojas, M., 2013. Large–Scale Control on the Patagonian Climate. American Meteorological Society 26, 215230.Google Scholar
Garreaud, R., Vuille, M., Campagnucci, R., Marengo, J., 2009. Present–day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 180195.CrossRefGoogle Scholar
Gu, B., 2009. Variations and controls of nitrogen stable isotopes in particulate organic matter of lakes. Oecologia 160, 421431. 10.1007/s00442-009-1323-z.CrossRefGoogle Scholar
Gustafsson, J.P., Bhattacharya, P., Karltun, E., 1999. Mineralogy of poorly crystalline aluminium phases in the B horizon of Podzols in southern Sweden. Applied Geochemistry 14, 707718.CrossRefGoogle Scholar
Haberzettl, T., Fey, M., Lücke, A., Maidana, N., Mayr, C., Ohlendorf, C., Schäbitz, F., Schleser, G., Wille, M., Zolitschka, B., 2005. Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). Journal of Paleolimnology 33, 283302.CrossRefGoogle Scholar
Haberzettl, T., Kück, B., Wulf, S., Anselmeti, F., Ariztegui, D., Corbella, H., Fey, M., et al. , 2008. Hydrological variability in southeastern Patagonia and explosive volcanic activity in the southern Andean Cordillera during Oxygen Isotope Stage 3 and the Holocene inferred from lake sediments of Laguna Potrok Aike, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 213229.CrossRefGoogle Scholar
Hadas, O., Altabet, M.A., Agnihotri, , 2009. Seasonally varying nitrogen isotope biogeochemistry of particulate organic matter in Lake Kinneret, Israel. Limnology and Oceanography 54, 7585.CrossRefGoogle Scholar
Haley, B., Klinkhammer, G., McManus, J., 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta 68, 12651279.CrossRefGoogle Scholar
Heiri, O., Lotter, A., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Henmi, T., Wada, K., 1976. Morphology and composition of allophone. American Mineralogist 61, 379390.Google Scholar
Hermanns, Y.M., Biester, H., 2013. Anthropogenic mercury signals in lake sediments from southernmost Patagonia, Chile. Science of the Total Environment 445–446, 126135.CrossRefGoogle ScholarPubMed
Hijmans, R., Cameron, S., Parra, J., Jones, P., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Hughes, M., Diaz, H., 1994. Was there a ‘Medieval Warm Period’, and if so, where and when? Climatic Change 26, 109142.CrossRefGoogle Scholar
Iglesias, V., Whitlock, C., Bianchi, M., Villarosa, G., Outes, V., 2011. Holocene climate variability and environmental history at the Patagonian forest/steppe ecotone: Lago Mosquito (42°29'37.89''S, 71°24'14.57''W) and Laguna del Cóndor (42°20'47.22''S, 71°17'07.62''W). The Holocene 22, 12971307.CrossRefGoogle Scholar
Iglesias, V., Whitlock, C., Bianchi, M., Villarosa, G., Outes, V., 2012. Climate and local controls of long–term vegetation dynamics in northern Patagonia (Lat 41°S). Quaternary Research 78, 502512.CrossRefGoogle Scholar
Kilian, R., Lamy, F., 2012. A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Quaternary Science Reviews 53, 123.CrossRefGoogle Scholar
La Manna, L., 2005. Soil characterization of Austrocedrus chilensis forests along a climatic and topographic gradient in Chubut province, Argentina. Bosque 26, 137153.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., Röhl, U., Wefer, G., 2001. Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters 185, 369382.CrossRefGoogle Scholar
Lamy, F., Kilian, R., Arz, H., Francois, J., Kaiser, J., Prange, M., Steinke, T., 2010. Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geoscience 3, 695699.CrossRefGoogle Scholar
Lara, A., Villalba, R., 1993. A 3620–year temperature record from Fitzroya cupressoides tree rings in Southern South America. Science 260, 11041106.CrossRefGoogle ScholarPubMed
Liu, W., Li, X., An, Z., Xu, Z., Zhang, Q., 2013. Total organic carbon isotopes: A novel proxy of lake level from Lake Qinghai in the Qinghai–Tibet Plateau, China. Chemical Geology 347, 153160.CrossRefGoogle Scholar
Lizuain, A., 1999. Estratigrafía y evolución geológica del Jurásico y Cretácico de la Cordillera Patagónica Septentrional. Geología Argentina, Anales 29, 433443.Google Scholar
Lüning, S., Galka, M., Bamonte, F., Rodríguez, F., Vahrenholt, F., 2019. The Medieval Climate Anomaly in South America. Quaternary International 508, 7087.CrossRefGoogle Scholar
Mann, M., Zhang, Z., Hughes, M., Bradley, R., Miller, S., Rutherford, S., Ni, F., 2008. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences 105, 1325213257.CrossRefGoogle ScholarPubMed
Mann, M., Zhang, Z., Rutherford, S., Bradley, R., Hughes, M., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.CrossRefGoogle ScholarPubMed
Markgraf, V., Iglesias, V., Whitlock, C., 2013. Late and postglacial vegetation and fire history from Cordón Serrucho Norte, northern Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology 371, 109118.CrossRefGoogle Scholar
Masiokas, M.H., Luckman, B., Villalba, R., Ripalte, A., Rabassa, J., 2010. Little Ice Age fluctuations of Glaciar Río Manso in the north Patagonian Andes of Argentina. Quaternary Research 73, 96106.CrossRefGoogle Scholar
Mauquoy, D., Blaauw, M., van Geel, B., Borromei, A., Quattrocchio, M., Chambers, F., Possnert, G., 2004. Late Holocene climatic changes in Tierra del Fuego based on multiproxy analyses of peat deposits. Quaternary Research 61, 148158.CrossRefGoogle Scholar
Mayr, C., Fey, M., Haberzettl, T., Janssen, S., Lucke, A., Maidana, N., Ohlendorf, C., et al. , 2005. Palaeoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 228, 203227.CrossRefGoogle Scholar
Mayr, C., Lucke, A., Fey, M., Maidana, N., Wille, M., Haberzettl, T., Corbella, H., et al. , 2009. Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. Journal of Paleolimnology 42, 81102.CrossRefGoogle Scholar
Mayr, C., Smith, R., García, M.L., Massaferro, J., Lücke, A., Dubois, N., Maidana, , et al. , 2019. Historical eruptions of Lautaro Volcano and their impacts on lacustrine ecosystems in southern Argentina. Journal of Paleolimnology 62:205221.CrossRefGoogle Scholar
Meyer, I., Wagner, S., 2008. The Little Ice Age in southern Patagonia: Comparison between paleoecological reconstructions and downscaled model output of a GCM simulation. PAGES News 16, 1213.CrossRefGoogle Scholar
Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34, 261289.CrossRefGoogle Scholar
Meyers, P.A., Lallier-Verges, E., 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. Journal of Paleolimnology 21, 345372.CrossRefGoogle Scholar
Meyers, P.A., Teranes, J.L., 2001. Sediment organic matter. In: Last, M., Smol, J. (Eds.), Tracking Environmental Change Using Lake Sediments. Kluwer Academic Publishers, Dordrecht, pp. 239269.Google Scholar
Moreno, P., Francois, J., Villa–Martínez, R., Moy, C., 2009. Millennial–scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quaternary Science Reviews 28, 2538.CrossRefGoogle Scholar
Moreno, P., Vilanova, I., Villa-Martínez, R., Garreaud, R., Rojas, M., De Pol-Holz, R., 2014. Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millennia. Nature Communications 5375, 17.Google Scholar
Moy, C., Dunbar, R., Moreno, P., Francois, J.-P., Villa-Martínez, R., Mucciarone, D., Guilderson, T., Garreaud, R., 2008. Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium. Quaternary Science Reviews 27, 13351349.CrossRefGoogle Scholar
Moy, C., Moreno, P., Dunbar, R., Kaplan, M., Francois, J., Villalba, R., Haberzettl, T., 2009. Climate change in southern South America during the last two millennia. In: Vimeux, F., Sylvestre, F, Khodri, M. (Eds.), Past Climate Variability in South America and Surrounding Regions. Developments in Paleoenvironmental Research 14, https://doi.org/10.1007/978-90-481-2672-9_15.Google Scholar
Neukom, R., Gergis, J., Karoly, D., Wanner, H., Curran, M., Elbert, J., González-Rouco, F., et al. , 2014. Inter-hemispheric temperature variability over the past millennium. Nature Climate Change 4, 362367.CrossRefGoogle Scholar
Nriagu, J., 1996. A History of Global Metal Pollution. Science 272, 223224.CrossRefGoogle Scholar
Ohlendorf, C., Fey, M., Massaferro, J., Haberzettl, T., Laprida, C., Lücke, A., Maidana, N., et al. , 2014. Late Holocene hydrology inferred from lacustrine sediments of Laguna Cháltel (southeastern Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 411, 229248.CrossRefGoogle Scholar
Orts, D., Folguera, A., Giménez, M., Ruiz, F., Rojas Vera, E., Klinger, F., 2015. Cenozoic building and deformational processes in the North Patagonian Andes. Journal of Geodynamics 86, 2641.CrossRefGoogle Scholar
Osborne, T., Briffa, K., 2006. The Spatial Extent of 20th-Century Warmth in the Context of the Past 1200 Years. Science 311, 841844.CrossRefGoogle Scholar
Paruelo, J.M., Beltrán, A., Jobbágy, E., Sala, O., Golluscio, R., 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8, 85101.Google Scholar
Pizzolón, L., Santinelli, N., Marinone, M., Menu-Marque, S., 1995. Plankton and hydrochemistry of Lake Futalaufquen (Patagonia, Argentina) during the growing season. Hydrobiologia 316, 6373.CrossRefGoogle Scholar
Planchon, F., Boutron, C., Barbante, C., Cozzi, G., Gaspari, V., Wolff, C., Ferrari, C., Cescon, P., 2002. Changes in heavy metals in Antarctic snow from Coats Land since the mid–19th to the late–20th century. Earth and Planetary Science Letters 200, 207222.CrossRefGoogle Scholar
Ponce, J., Borromei, A., Rabassa, J., Martinez, O., 2011. Late Quaternary palaeoenvironmental change in western Staaten Island (54.5°S, 64°W), Fuegian Archipelago. Quaternary International 233, 89100.Google Scholar
Rawlence, D., 1984. A study of pigment and diatoms in a core from Lake Rotorua, North Island, New Zealand, with emphasis on recent history. Journal of the Royal Society of New Zealand 14, 119132.CrossRefGoogle Scholar
Ribeiro Guevara, S., Meili, M., Rizzo, A., Daga, R., Arribére, M., 2010. Sediment records of highly variable mercury inputs to mountain lakes in Patagonia during the past millennium. Atmospheric Chemistry and Physics 10, 34433453.CrossRefGoogle Scholar
Ribeiro Guevara, S., Rizzo, A., Daga, R., Williams, N., Villa, S., 2019. Bromine in sedimentary sequences as a proxy in paleolimnological studies. Quaternary Research https://doi.org/10.1017/qua.2018.125.CrossRefGoogle Scholar
Ribeiro Guevara, S., Rizzo, A., Sánchez, R., Arribére, M., 2005. Heavy metal inputs in Northern Patagonia lakes from short sediment cores analysis. Journal of Radioanalytical and Nuclear Chemistry 265, 481493.CrossRefGoogle Scholar
Ruiz, L., Berthier, E., Viale, M., Pitte, P., Masiokas, M., 2017. Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes. The Cryosphere 11, 619634.CrossRefGoogle Scholar
Schimpf, D., Kilian, R., Kronz, A., Simon, K., Spötl, C., Wörner, G., Deininger, M., Mangini, A., 2011. The significance of chemical, isotopic, and detrital components in three coeval stalagmites from the superhumid southernmost Andes (53°S) as high-resolution palaeo-climate proxies. Quaternary Science Reviews 30, 443459.CrossRefGoogle Scholar
Serra, M., García, M., Maidana, N., Villarosa, G., Lami, A., Massaferro, J., 2016. Little ice age to present paleoenvironmental reconstruction based on multiproxy analyses from Nahuel Huapi lake (Patagonia, Argentina). Ameghiniana 53, 5873.CrossRefGoogle Scholar
Smol, J.P., 2008. Pollution of lakes and rivers, a paleoenvironmental perspective. Blackwell Publishing, USA.Google Scholar
Stern, C., 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 31, 161206.CrossRefGoogle Scholar
Stine, S., 1993. Extreme and persistent drought in California and Patagonia during medieval time. Nature 369, 5760.Google Scholar
Telford, R., Barker, P., Metcalfe, S., Newton, A., 2004. Lacustrine responses to tephra deposition: examples from Mexico. Quaternary Science Reviews 23, 23372353.CrossRefGoogle Scholar
Teranes, J., Bernasconi, S., 2000. The record of nitrate utilization and productivity limitation provided by d15N values in lake organic matter—A study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnology and Oceanography 45, 801813.CrossRefGoogle Scholar
Toggweiler, J.R., Russell, J.L., Carson, S.R., 2006. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005, https://doi.org/10.1029/2005PA001154.CrossRefGoogle Scholar
Torres, I., Inglett, P., Brenner, M., Kenney, W., Reddy, K., 2012. Stable isotope (d13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status. Journal of Paleolimnology 47, 693706.CrossRefGoogle Scholar
Van Bellen, S., Mauquoy, D., Hughes, P., Roland, R., Daley, T., Loader, N., Street-Perrot, F., Rice, E., Pancotto, V., Payne, R., 2016. Late-Holocene climate dynamics recorded in the peat bogs of Tierra del Fuego, South America. The Holocene 26, 489501.CrossRefGoogle Scholar
Van de Velde, K., Boutron, C., Ferrari, C., Moreau, A., Delmas, R., Barbante, C., Bellomi, T., Capodaglio, G., Cescon, P., 2000. A two hundred years record of atmospheric Cadmium, Copper and Zinc concentrations in high altitude snow and ice from the French–Italian Alps. Geophysical Research Letters 27, 249252.CrossRefGoogle Scholar
Veblen, T., Kitzberger, T., Raffaele, E., Lorenz, D., 2003. Fire history and vegetation changes in northern Patagonia, Argentina. In: Veblen, T., Baker, W., Montenegro, G., Swetnam, W., (Eds.). Fire and climatic change in temperate ecosystems of the Western Americas. Springer, New York, pp. 259289.CrossRefGoogle Scholar
Vila, A., Borrelli, L., 2011. Cattle in the Patagonian forests: Feeding ecology in Los Alerces National Reserve. Forest Ecology and Management 261, 13061314.CrossRefGoogle Scholar
Villalba, R., 1990. Climatic fluctuations in Northern Patagonia during the last 1000 years as inferred from tree–ring reconstructions. Quaternary Research 34, 346360.CrossRefGoogle Scholar
Villalba, R., 1994. Tree–ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in Southern South America. Climatic Change 26, 183197.CrossRefGoogle Scholar
Villalba, R., Leiva, J., Rubulls, S., Suarez, J., Lenzano, L., 1990. Climate, tree-ring, and glacial fluctuations in the río Frias valley, Río Negro, Argentina. Arctic and Alpine Research 22, 215232.CrossRefGoogle Scholar
Waldmann, N., Ariztegui, D., Anselmetti, F., Austin, J., Moy, C., Stern, C., Recasens, C., Dunbar, R., 2010. Holocene climatic fluctuations and positioning of the Southern Hemisphere westerlies in Tierra del Fuego (54°S), Patagonia. Journal of Quaternary Science 25, 10631075.CrossRefGoogle Scholar
Williams, N., Añón Suárez, D., Rieradevall, M., Rizzo, A., Daga, R., Arribére, M., Ribeiro Guevara, S., 2019. Response of Chironomidae to environmental disturbances in a high mountain lake in Patagonia during the last millennium. Quaternary Research https://doi.org/10.1017/qua.2019.5.CrossRefGoogle Scholar
Williams, N., Rieradevall, M., Añón Suárez, D., Rizzo, A., Daga, R., Ribeiro Guevara, S., Arribére, M., 2016. Chironomids as indicators of natural and human impacts in a 700 yr record from the northern Patagonian Andes. Quaternary Research 86, 120132.CrossRefGoogle Scholar
Woszczyk, M., Grassineau, N., Tylmann, W., Kowalewski, G., Lutynska, M., Bechtel, A., 2014. Stable C and N isotope record of short term changes in water level in lakes of different morphometry: Lake Anastazewo and Lake Skulskie, central Poland. Organic Geochemistry 76, 278287.CrossRefGoogle Scholar
Supplementary material: PDF

Daga et al. supplementary material

Daga et al. supplementary material 1

Download Daga et al. supplementary material(PDF)
PDF 383.2 KB
Supplementary material: PDF

Daga et al. supplementary material

Daga et al. supplementary material 2

Download Daga et al. supplementary material(PDF)
PDF 799.1 KB
Supplementary material: File

Daga et al. supplementary material

Daga et al. supplementary material 3

Download Daga et al. supplementary material(File)
File 12.3 KB
Supplementary material: PDF

Daga et al. supplementary material

Daga et al. supplementary material 4

Download Daga et al. supplementary material(PDF)
PDF 195.7 KB