Hostname: page-component-6b989bf9dc-g5k2d Total loading time: 0 Render date: 2024-04-11T20:41:44.531Z Has data issue: false hasContentIssue false

Sea level, paleogeography, and archeology on California's Northern Channel islands

Published online by Cambridge University Press:  20 January 2017

Leslie Reeder-Myers*
Program in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution , Washington D.C. 20013, USA
Jon M. Erlandson
Museum of Natural and Cultural History, Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
Daniel R. Muhs
U.S. Geological Survey, MS 980 Box 25046, Federal Center, Denver, CO 80225, USA
Torben C. Rick
Program in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution , Washington D.C. 20013, USA
*Corresponding author. E-mail (L. Reeder-Myers), (J.M. Erlandson), (D.R. Muhs), (T.C. Rick).


Sea-level rise during the late Pleistocene and early Holocene inundated nearshore areas in many parts of the world, producing drastic changes in local ecosystems and obscuring significant portions of the archeological record. Although global forces are at play, the effects of sea-level rise are highly localized due to variability in glacial isostatic adjustment (GIA) effects. Interpretations of coastal paleoecology and archeology require reliable estimates of ancient shorelines that account for GIA effects. Here we build on previous models for California's Northern Channel Islands, producing more accurate late Pleistocene and Holocene paleogeographic reconstructions adjusted for regional GIA variability. This region has contributed significantly to our understanding of early New World coastal foragers. Sea level that was about 80-85 m lower than present at the time of the first known human occupation brought about a landscape and ecology substantially different than today. During the late Pleistocene, large tracts of coastal lowlands were exposed, while a colder, wetter climate and fluctuating marine conditions interacted with rapidly evolving littoral environments. At the close of the Pleistocene and start of the Holocene, people in coastal California faced shrinking land, intertidal, and subtidal zones, with important implications for resource availability and distribution.

Research Article
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Agenbroad, L.D., Johnson, J.R., Morris, D., Stafford jr., T.W., (2005). Mammoths and humans as late Pleistocene contemporaries on Santa Rosa Island. Garcelon, D., Schwemm, C. Proceedings of the Sixth California Islands Symposium Institute for Wildlife Studies, Arcata, CA.37.Google Scholar
Anderson, R.S., Starratt, S., Jass, R.M.B., Pinter, N., (2010). Fire and vegetation history on Santa Rosa Island, Channel Islands, and long-term environmental change in southern California. Journal of Quaternary Science 25, 782797.Google Scholar
Bailey, G.N., Flemming, N.C., (2008). Archaeology of the continental shelf: marine resources, submerged landscapes and underwater archaeology. Quaternary Science Reviews 27, 21532165.Google Scholar
Bailey, G., Milner, N., (2002). Coastal hunter"gatherers and social evolution: marginal or central?. Before Farming 3"4, 122.Google Scholar
Bailey, G.N., Flemming, N.C., King, G.C., Lambeck, K., Momber, G., Moran, L.J., Al-Sharekh, A., Vita-Finzi, C., (2007). Coastlines, submerged landscapes, and human evolution: the Red Sea Basin and the Farasan Islands. Journal of Island and Coastal Archaeology 2, 127160.Google Scholar
Braje, T.J., Erlandson, J.M., Rick, T.C., (2013). Points in space and time: the distribution of Paleocoastal points and crescents on California's Northern Channel Islands. Jazwa, C., Perry, J. Small Islands, Big Implications: The California Channel Islands and Their Archaeological Contributions University of Utah Press, Salt Lake City, UT.72106.Google Scholar
Carignan, K.S., Taylor, L.A., Eakins, B.W., Warnken, R.R., Lim, E., Medley, P.R., (2009). Digital Elevation Model of Santa Barbara, California: Procedures, Data Sources, and Analysis. National Geophysical Data Center, Marine Geology and Geophysics Division, .Google Scholar
Chaytor, J.D., Goldfinger, C., Meiner, M.A., Huftile, G.J., Romsos, C.G., Legg, M.R., (2008). Measuring vertical tectonic motion at the intersection of the Santa Cruz"Catalina Ridge and Northern Channel Islands platform, California continental borderland, using submerged paleoshorelines. Geological Society of America Bulletin 120, 10531071.Google Scholar
Clark, J., Mitrovica, J.X., Alder, J., (2014). Coastal paleogeography of the California"Oregon"Washington and Bering Sea continental shelves during the latest Pleistocene and Holocene: implications for the archaeological record. Journal of Archaeological Science 52, 1223.Google Scholar
deSmith, M.J., Goodchild, M.F., Longley, P.A., (2007). Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools. The Winchelsea Press, Leicester.Google Scholar
Dillehay, T.D., (2009). Probing deeper into first American studies. Proceedings of the National Academy of Sciences 106, 971978.CrossRefGoogle ScholarPubMed
Engle, D.L., (2006). Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California. National Park Service, U.S. Department of the Interior, Water Resources Division, Denver, CO.Google Scholar
Erlandson, J.M., (2001). The archaeology of aquatic adaptations: paradigms for a new millennium. Journal of Archaeological Research 9, 287350.Google Scholar
Erlandson, J.M., (2013). Channel Island Amol points: a stemmed paleocoastal type from Santarosae Island, Alta California. California Archaeology 5, 105121.Google Scholar
Erlandson, J.M., Braje, T.J., (2008). Five crescents from Cardwell: context and chronology of chipped stone crescents from CA-SMI-679, San Miguel Island, California. Pacific Coast Archaeological Society Quarterly 40, 3545.Google Scholar
Erlandson, J.M., Kennett, D.J., Ingram, B.L., Guthrie, D.A., Morris, D.P., Tveskov, M.A., West, G.J., Walker, P.L., (1996). An archaeological and paleontological chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. Radiocarbon 38, 355373.CrossRefGoogle Scholar
Erlandson, J.M., Rick, T.C., Vellanoweth, R.L., Kennett, D.J., (1999). Maritime subsistence at a 9300 year old shell midden on Santa Rosa Island,California. Journal of Field Archaeology 26, 255265.Google Scholar
Erlandson, J.M., Rick, T.C., Jones, T.L., Porcasi, J.F., Jones, T.L., Klarr, K.A., (2007). One if by land, two if by sea: who were the first Californians. California Prehistory: Colonization, Culture, and Complexity Altamira Press, New York, NY.5362.Google Scholar
Erlandson, J.M., Rick, T.C., Braje, T.J., (2009). Fishing up the food web?: 12,000 years of maritime subsistence and adaptive adjustments on California's Channel Islands. Pacific Science 63, 711724.Google Scholar
Erlandson, J.M., Rick, T.C., Braje, T.J., Casperson, M., Culleton, B., Fulfrost, B., Garcia, T., Guthrie, D.A., Jew, N., Kennett, D.J., Moss, M.L., Reeder, L., Skinner, C., Watts, J., Willis, L., (2011). Paleoindian seafaring, maritime technologies, and coastal foraging on California's Channel Islands. Science 331, 11811185.Google Scholar
Erlandson, J.M., Gill, K.M., Rick, T.C., Reeder-Myers, L.A., (2015). Three late Paleocoastal shell middens on Santa Cruz Island, California. PaleoAmerica 1, 10.1179/2055556314Z.00000000011.Google Scholar
Fedje, D.W., Josenhans, H., Clague, J.J., Barrie, J.V., Archer, D.J., Southon, J.R., (2005). Hecate Strait paleoshorelines. Fedje, D.W., Mathewes, R.W. Haida Gwaii: Human History and Environment from the Time of Loon to the Time of the Iron People University of British Columbia Press, Vancouver.2137.Google Scholar
Ghilardi, M., Psomiadis, D., Pavlopoulos, K., "elka, S.M., Fachard, S., Theurillat, T., Verdan, S., Knodell, A.R., Theodoropoulou, T., Bicket, A., Bonneau, A., Delanghe-Sabatier, D., (2014). Mid- to late Holocene shoreline reconstruction and human occupation in Ancient Eretria (South Central Euboea, Greece). Geomorphology 208, 225237.CrossRefGoogle Scholar
Gill, K.M., (2014). Seasons of change: using seasonal morphological changes in Brodiaea corms to determine season of harvest from archaeobotanical remains. American Antiquity 79, 638654.CrossRefGoogle Scholar
Glassow, M.A., Gamble, L.H., Perry, J.E., Russell, G.S., (2007). Prehistory of the Northern California Bight and the adjacent transverse ranges. Jones, Terry L., Klarr, K.A. California Prehistory: Colonization, Culture, and Complexity Altamira Press, New York, NY.191214.Google Scholar
Glassow, M.A., Perry, J.E., Paige, P.F., (2008). The Punta Arena Site and Early and Middle Holocene Cultural Development on Santa Cruz Island, California. Santa Barbara Museum of Natural History, Santa Barbara, CA.Google Scholar
Glassow, M.A., Erlandson, J.M., Braje, T.J., (2013). A typology of Channel Islands barbed points. Journal of California and Great Basin Anthropology 33, 185196.Google Scholar
Graham, M.H., Dayton, P.K., Erlandson, J.M., (2003). Ice ages and ecological transitions on temperate coasts. Trends in Ecology & Evolution 18, 3340.Google Scholar
Grelaud, M., Beaufort, L., Cuven, S., Buchet, N., (2009). Glacial to interglacial primary production and El Ni"o-southern oscillation dynamics inferred from coccolithophores of the Santa Barbara Basin. Paleoceanography 24, PA1203.Google Scholar
Hendy, I.L., (2010). The paleoclimatic response of the Southern Californian Margin to the rapid climate change of the last 60 ka: a regional overview. Quaternary International 215, 6273.CrossRefGoogle Scholar
Heusser, L., (1998). Direct correlation of millennial-scale changes in western North American vegetation and climate with changes in the California Current System over the past 60 kyr. Paleoceanography 13, 252262.Google Scholar
Hill, T.M., Kennett, J.P., Pak, D.K., Behl, R.J., Robert, C., Beaufort, L., (2006). Pre-B"lling warming in Santa Barbara Basin, California: surface and intermediate water records of early deglacial warmth. Quaternary Science Reviews 25, 28352845.Google Scholar
Hofman, C.A., Rick, T.C., Hawkins, M., Funk, W.C., Ralls, K., Boser, C., Collins, P.W., Coonan, T., King, J., Morrison, S., Newsome, S.D., Sillett, T.S., Fleischer, R., Maldonado, J.E., (2015). Mitochondrial genomes reveal rapid evolution of dwarf California Channel Islands foxes (Urocyon littoralis). PLoS ONE (2014, in press).Google Scholar
Inman, D.L., (1983). Application of coastal dynamics to the reconstruction of paleocoastlines in the vicinity of La Jolla, California. Masters, P.M., Flemming, N.C. Quaternary Coastlines and Marine Archaeology: Towards the Prehistory of Land Bridges and Continental Shelves Academic Press, New York, NY.149.Google Scholar
Jew, N.P., Erlandson, J.M., White, F.J., (2013). Paleocoastal lithic use on western Santarosae Island, California. North American Archaeologist 34, 4969.Google Scholar
Johnson, D.L., Masters, P.M., Flemming, N.C., (1983). The California continental borderland: landbridges, watergaps and biotic dispersals. Masters, P.M., Flemming, N.C. Quaternary Coastlines and Marine Archaeology: Towards the Prehistory of Land Bridges and Continental Shelves Academic Press, New York, NY.481527.Google Scholar
Johnson, J.R., Stafford jr., T.W., Ajie, H.O., Morris, D.P., (2002). Arlington Springs revisited. Proceedings of the Fifth California Islands Symposium Santa Barbara Museum of Natural History, Santa Barbara, CA.541545.Google Scholar
Johnson, J.R., Stafford, T.W., West, G.J., Rockwell, T.K., (2007). Before and after the Younger Dryas: chronostratigraphic and paleoenvironmental research at Arlington Springs, Santa Rosa Island, California. AGU Spring Meeting Abstracts 03.Google Scholar
Junak, S., Knapp, D.A., Haller, J.R., Philbrick, R.N., Schoenherr, A.A., Keeler-Wolf, T., (2007). The California Channel Islands. Barbour, M.G., Keeler-Wolf, T., Schoenherr, A.A. Terrestrial Vegetation of California University of California Press, Berkeley, CA.229252.Google Scholar
Kendall, R.A., Mitrovica, J.X., Milne, G.A., (2005). On post-glacial sea level-II. Numerical formulation and comparative results on spherically symmetric models. Geophysical Journal International 161, 679706.Google Scholar
Kennett, J.P., Roark, E.B., Cannariato, K.G., Ingram, B.L., Tada, R., (2000). Latest Quaternary paleoclimatic and radiocarbon chronology, Hole 1017E, Southern California. Ocean Drilling Program, Scientific Results 249254.Google Scholar
Kennett, D.J., Kennett, J.P., Erlandson, J.M., Cannariato, K.G., (2007). Human responses to middle Holocene climate change on California's Channel Islands. Quaternary Science Reviews 26, 351367.Google Scholar
Kennett, D.J., Kennett, J.P., West, G.J., Erlandson, J.M., Johnson, J.R., Hendy, I.L., West, A., Culleton, B., Jones, T.L., Stafford jr., T.W., (2008). Wildfire and abrupt ecosystem disruption on California's Northern Channel Islands at the Aller"d"Younger Dryas boundary (13.0"12.9 ka). Quaternary Science Reviews 27, 25302545.Google Scholar
Kinlan, B.P., Graham, M.H., Erlandson, J.M., (2005). Late-Quaternary changes in the size and shape of the California Channel Islands: implications for marine subsidies to terrestrial communities. Garcelon, D., Schwemm, C. Proceedings of the California Islands Symposium Institute for Wildlife Studies, Arcata, CA.119130.Google Scholar
Lambeck, K., Purcell, A., Flemming, N.C., Vita-Finzi, C., Alsharekh, A.M., Bailey, G.N., (2011). Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa. Quaternary Science Reviews 30, 35423574.Google Scholar
Masters, P.M., (2006). Holocene sand beaches of southern California: ENSO forcing and coastal processes on millennial scales. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 7395.Google Scholar
McLaren, D., Fedje, D., Hay, M., Mackie, Q., Walker, I.J., Shugar, D.H., Eamer, J.B.R., Lian, O.B., Neudorf, C., (2014). A post-glacial sea level hinge on the central Pacific coast of Canada. Quaternary Science Review 97, 148169.Google Scholar
McLean, J.H., (1978). Marine shells of southern California. Natural History Museum of Los Angeles County Science Series vol. 24, ((revised), 104 pp.).Google Scholar
Meltzer, D.J., (2009). First Peoples in a New World: Colonizing Ice Age America. Univ of California Press, .Google Scholar
Mitrovica, J.X., Milne, G.A., (2003). On post-glacial sea level: I. General theory. Geophysical Journal International 154, 253267.CrossRefGoogle Scholar
Muhs, D.R., Skip, G., Schumann, R.R., Johnson, D.L., McGeehin, J.P., Beann, J., Freeman, J., Pearce, T.A., Rowland, Z.M., (2009). The origin and paleoclimatic significance of carbonate sand dunes deposited on the California Channel Islands during the last glacial period. Damiania, C.C., Garcelon, D.K. Proceedings of the 7th California Islands Symposium Institute for Wildlife Studies, Arcata, CA.314.Google Scholar
Muhs, D.R., Simmons, K.R., Schumann, R.R., Groves, L.T., Mitrovica, J.X., Laurel, D., (2012). Sea-level history during the last interglacial complex on San Nicolas Island, California: implications for glacial isostatic adjustment processes, paleozoogeography and tectonics. Quaternary Science Reviews 37, 125.Google Scholar
Muhs, D.R., Simmons, K.R., Schumann, R.R., Groves, L.T., DeVogel, S.B., Minor, S.A., Laurel, D., (2014). Coastal tectonics on the eastern margin of the Pacific Rim: Late Quaternary sea-level history and uplift rates, Channel Islands National Park, California, USA. Quaternary Science Reviews 105, 209238.Google Scholar
Nardin, T.R., Osborne, R.H., Bottjer, D.J., Scheidemann, R.C., (1981). Holocene sea-level curves for Santa Monica shelf, California continental borderland. Science 213, 331333.Google Scholar
Norris, R.M., Webb, R.W., (1976). Geology of California. John Wiley & Sons, Inc., New York, NY.Google Scholar
Orr, P.C., (1962). The Arlington Spring site, Santa Rosa Island, California. American Antiquity 417419.Google Scholar
Orr, P.C., (1968). Prehistory of Santa Rosa Island. Santa Barbara Museum of Natural History, Santa Barbara, CA.Google Scholar
Pinter, N., Lueddecke, S.B., Keller, E.A., Simmons, K.R., (1998a). Late Quaternary slip on the Santa Cruz Island fault, California. Geological Society of America Bulletin 110, 711722.Google Scholar
Pinter, N., Sorlien, C.C., Scott, A.T., (1998b). Late Quaternary folding and faulting of Santa Cruz Island, California. Weigand, P.W. Contributions to the Geology of the Northern Channel Islands, Southern California American Association of Petroleum Geologists, Pacific Section, MP 45, Bakersfield, CA.111122.Google Scholar
Pinter, N., Sorlien, C.C., Scott, A.T., (2003). Fault-related fold growth and isostatic subsidence, California Channel Islands. American Journal of Science 303, 300318.Google Scholar
Porcasi, P., Porcasi, J.F., O'Neill, C., (1999). Early Holocene coastlines of the California Bight: the Channel Islands as first visited by humans. Pacific Coast Archaeological Society Quarterly 35, 124.Google Scholar
Reddy, S.N., Erlandson, J.M., (2012). Macrobotanical food remains from a trans-Holocene sequence at Daisy Cave (CA-SMI-261), San Miguel Island, California. Journal of Archaeological Science 39, 3340.Google Scholar
Reeder-Myers, L., (2014a). 9000 years of settlement in the Carrington Point area of Santa Rosa Island, California. California Archaeology 5, 247271.Google Scholar
Reeder-Myers, L.A., (2014b). Multi-scalar foraging decisions in the Santa Barbara Channel, Southern California. Journal of Anthropological Archaeology 35, 202219.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatt", C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.W., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., (2013). IntCal13 and Marine13 radiocarbon age calibration curves, 0"50,000 years cal BP. Radiocarbon 55, 18691888.Google Scholar
Rick, T.C., (2009). 8000 years of human settlement and land use in Old Ranch Canyon, Santa Rosa Island, California. Damiani, C.C., Garcelon, D. Proceedings of the Seventh California Islands Symposium Institute for Wildlife Studies, Arcata, CA.2131.Google Scholar
Rick, T.C., (2013). Hunter"gatherers, endemic island mammals, and the historical ecology of California's Channel Islands. Thompson, V., Waggoner jr., J. The Archaeology and Historical Ecology of Small Scale Economies, University Press of Florida, Gainesville.4164.CrossRefGoogle Scholar
Rick, T.C., Erlandson, J.M., Vellanoweth, R.L., (2001). Paleocoastal marine fishing on the Pacific coast of the Americas: perspectives from Daisy Cave, California. American Antiquity 66, 595613.Google Scholar
Rick, T.C., Erlandson, J.M., Vellanoweth, R.L., Braje, T.J., (2005a). From Pleistocene mariners to complex hunter"gatherers: the archaeology of the California Channel Islands. Journal of World Prehistory 19, 169228.Google Scholar
Rick, T.C., Kennett, D.J., Erlandson, J.M., (2005b). Preliminary report on the archaeology and paleoecology of the Abalone Rocks Estuary, Santa Rosa Island, California. Garcelon, D., Schwemm, C. Proceedings of the Sixth California Islands Symposium Institute for Wildlife Studies, Arcata, CA.5563.Google Scholar
Rick, T.C., Hofman, C.A., Braje, T.J., Maldonado, J.E., Sillett, T.S., Danchisko, K., Erlandson, J.M., (2012). Flightless ducks, giant mice and pygmy mammoths: Late Quaternary extinctions on California's Channel Islands. World Archaeology 44, 320.Google Scholar
Rick, T.C., Erlandson, J.M., Jew, N.P., Reeder-Myers, L.A., (2013). Archaeological survey, paleogeography, and the search for late Pleistocene Paleocoastal peoples of Santa Rosa Island, California. Journal of Field Archaeology 38, 324331.Google Scholar
Rick, T.C., Sillett, T.S., Ghalambor, C.K., Hofman, C.A., Ralls, K., Anderson, R.S., Boser, C.L., Braje, T.J., Cayan, D.R., Chesser, R.T., Collins, P.W., Erlandson, J.M., Faulkner, K.R., Fleischer, R., Funk, W.C., Galipeau, R., Huston, A., King, J., Laughrin, L., Maldonado, J.E., McEachern, K., Muhs, D.R., Newsome, S.D., Reeder-Myers, L., Still, C., Morrison, S., (2014). Ecological change on California's Channel Islands from the Pleistocene to the Anthropocene. BioScience 64, 680692. 10.1093/biosci/biu094.Google Scholar
Sabin, A.L., Pisias, N.G., (1996). Sea surface temperature changes in the northeastern Pacific Ocean during the past 20,000 years and their relationship to climate change in northwestern North America. Quaternary Research 46, 4861.Google Scholar
Schoenherr, A.A., Feldmeth, C.R., Emerson, M.J., (1999). Natural History of the Islands of California. University of California Press, Berkeley, CA.Google Scholar
Shackleton, J.C., Bailey, G., Parkington, J., (1988). Reconstructing past shorelines as an approach to determining factors affecting shellfish collecting in the prehistoric past. The Archaeology of Prehistoric Coastlines Cambridge University Press, Cambridge.1121.Google Scholar
Shugar, D.H., Walker, I.J., Lian, O.B., Eamer, J.B.R., Neudorf, C., McLaren, D., Fedje, D., (2005). Post-glacial sea-level change along the Pacific coast of North America. Quaternary Science Reviews 97, 170192.Google Scholar
Stott, L., Poulsen, C., Lund, S., Thunell, R., (2002). Super ENSO and global climate oscillations at millennial time scales. Science 297, 222226.Google Scholar
Warrick, J.A., Farnsworth, K.L., (2009). Sources of sediment to the coastal waters of the Southern California Bight. Lee, H.J., Normark, W.R. Earth Science in an Urban Ocean: The Southern California Continental Borderland Geological Society of America Special Paper. 454, Geological Society of America, Denver, CO.3952.Google Scholar
West, G.J., Erlandson, J.M., (1994). A late Pleistocene pollen record from San Miguel Island, California: preliminary results. AMQUA Abstracts with Program 13, 256.Google Scholar
Westley, K., Dix, J., (2006). Coastal environments and their role in prehistoric migrations. Journal of Maritime Archaeology 1, 928.Google Scholar