Skip to main content
    • Aa
    • Aa

Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia

  • Julian B. Murton (a1), Mary E. Edwards (a2) (a3), Anatoly V. Lozhkin (a4), Patricia M. Anderson (a5), Grigoriy N. Savvinov (a6), Nadezhda Bakulina (a7), Olesya V. Bondarenko (a8), Marina V. Cherepanova (a8), Petr P. Danilov (a6), Vasiliy Boeskorov (a6), Tomasz Goslar (a9) (a10), Semyon Grigoriev (a11), Stanislav V. Gubin (a12), Julia A. Korzun (a4), Alexei V. Lupachev (a12), Alexei Tikhonov (a13), Valeriya I. Tsygankova (a4), Galina V. Vasilieva (a14) and Oksana G. Zanina (a12)...

A megaslump at Batagaika, in northern Yakutia, exposes a remarkable stratigraphic sequence of permafrost deposits ~50–80 m thick. To determine their potential for answering key questions about Quaternary environmental and climatic change in northeast Siberia, we carried out a reconnaissance study of their cryostratigraphy and paleoecology, supported by four rangefinder 14C ages. The sequence includes two ice complexes separated by a unit of fine sand containing narrow syngenetic ice wedges and multiple paleosols. Overall, the sequence developed as permafrost grew syngenetically through an eolian sand sheet aggrading on a hillslope. Wood remains occur in two forest beds, each associated with a reddened weathering horizon. The lower bed contains high amounts of Larix pollen (>20%), plus small amounts of Picea and Pinus pumila, and is attributed to interglacial conditions. Pollen from the overlying sequence is dominated by herbaceous taxa (~70%–80%) attributed to an open tundra landscape during interstadial climatic conditions. Of three hypothetical age schemes considered, we tentatively attribute much of the Batagaika sequence to Marine Oxygen Isotope Stage (MIS) 3. The upper and lower forest beds may represent a mid–MIS 3 optimum and MIS 5, respectively, although we cannot discount alternative attributions to MIS 5 and 7.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia
      Available formats
Corresponding author
*Corresponding author at: Permafrost Laboratory, Department of Geography, University of Sussex, Brighton BN1 9QJ, United Kingdom. E-mail address: (J.B. Murton).
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A.A. Andreev , G. Grosse , L. Schirrmeister , S.A. Kuzmina , E Novenko . Yu ., A.A. Bobrov , P.E. Tarasov , et al., 2004. Late Saalian and Eemian palaeoenvironmental history of the Bol’shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia). Boreas 33, 319348.

A.A. Andreev , G. Grosse , L. Schirrmeister , T.V. Kuznetsova , S.A. Kuzmina , A.A. Bobrov , P.E. Tarasov , et al., 2009. Weichselian and Holocene palaeoenvironmental history of the Bol’shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia. Boreas 38, 72110.

A.A. Andreev , P.S. Tarasov , V. Wennrich , M. Melles , 2016. Millennial-scale vegetation changes in the north-eastern Russian Arctic during the Pliocene/Pleistocene transition (2.7–2.5 Ma) inferred from the pollen record of Lake El’gygytgyn. Quaternary Science Reviews 147, 245258.

N.I. Blokhina , O.V. Bondarenko , 2016. Fossil wood of Pinus priamurensis s. nov. (Pinaceae) from the Miocene deposits of the Erkovetskii Brown coal field, Amur region. Paleontological Journal 50, 311318.

R.S. Bradley , 2015. Paleoclimatology: Reconstructing Climates of the Quaternary. Elsevier, Amsterdam.

W. Dansgaard , S.J. Johnsen , H.B. Clausen , D. Dahl-Jensen , N.S. Gun-destrup , C.U. Hammer , C.S. Hvidberg , et al., 1993. Evidence for general instability of past climate from a 250 kyr ice core. Nature 364, 218219.

D.A. Gilichinsky , E. Nolte , A.E. Basilyan , J. Beer , A.V. Blinov , V.E. Lazarev , A.L. Kholodov , et al., 2007. Dating of syngenetic ice wedges in permafrost with 36Cl. Quaternary Science Reviews 26, 15471556.

O.Yu. Glushkova , 2011. Late Pleistocene glaciations in North-East Asia. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations - Extent and Chronology: A Closer Look. Developments in Quaternary Science 15. Elsevier, Amsterdam, pp. 865875.

D.M. Hopkins , J.V. Matthews Jr., C.E. Schweger , S.B. Young (Eds.), 1982. Paleoecology of Beringia. Academic Press, New York.

B. Huntley , M.J. Alfano , J.R.M. Allen , D. Pollard , P.C. Tzedakis , J.L. de Beaulieu , E. Gruger , 2003. European vegetation during Marine Oxygen Isotope Stage-3. Quaternary Research 59, 195212.

F. Kienast , L. Schirrmeister , C. Seigart , P. Tarasov , 2005. Paleobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quaternary Research 63, 283300.

V.N. Konishchev , V.V. Rogov , 1993. Investigations of cryogenic weathering in Europe and Northern Asia. Permafrost and Periglacial Processes 4, 4964.

A.V. Lozhkin , P.M. Anderson , 1995. The last interglaciation in northeast Siberia. Quaternary Research 43, 147158.

A.V. Lozhkin , P.M. Anderson , 2011. Forest or no forest: implications of the vegetation record for climatic stability in western Beringia during Oxygen Isotope Stage 3. Quaternary Science Reviews 30, 21602181.

A.V. Lozhkin , P.M. Anderson , T.V. Matrosova , P.S. Minyuk , 2007. The pollen record from El’gygytgyn Lake: implications for vegetation and climate histories of northern Chukotka since the late Middle Pleistocene. Journal of Paleolimnology 37, 135153.

M. Melles , J. Brigham-Grette , P.S. Minyuk , N.R. Nowaczyk , V. Wennrich , R.M. DeConto , P.M. Anderson , et al., 2012. 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315320.

J.B. Murton , T. Goslar , M.E. Edwards , M.D. Bateman , P.P. Danilov , G.N. Savvinov , S.V. Gubin , et al., 2015. Palaeoenvironmental interpretation of yedoma silt (Ice Complex) deposition as cold-climate loess, Duvanny Yar, northeast Siberia. Permafrost and Periglacial Processes 26, 208288.

W.G. Nickling , 1978. Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Canadian Journal of Earth Sciences 15, 10691084.

E. Palkopoulou , M. Baca , N.I. Abramson , M. Sablin , P. Socha , A. Nadachowski , S. Prost , et al., 2016. Synchronous genetic turnovers across western Eurasia in Late Pleistocene collared lemmings. Global Change Biology 22, 17101721.

J.S. Pigati , J. Quade , J. Wilson , A.J.T. Jull , N.A. Lifton , 2007. Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40–60 ka) samples. Quaternary International 166, 414.

T.J. Porter , D.G. Froese , S.J. Feakins , I.N. Bindeman , M.E. Mahony , B.G. Pautler , G-J. Reichart , P.T. Sanborn , M.J. Simpson , J.W.H. Weijers , 2016. Multiple water isotope proxy reconstruction of extremely low last glacial temperatures in eastern Beringia (western Arctic). Quaternary Science Reviews 137, 113125.

P.J. Reimer , E. Bard , A. Bayliss , J.W. Beck , P.G. Blackwell , C. Bronk Ramsey , C.E. Buck , et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.

A.V. Reyes , D.G. Froese , B.J.L. Jensen , 2010. Permafrost response to last interglacial warming: field evidence from non-glaciated Yukon and Alaska. Quaternary Science Reviews 29, 32563274.

L. Schirrmeister , D. Oezen , M.A. Geyh , 2002. 230Th/U dating of frozen peat, Bol’shoy Lyakhovsky Island (northern Siberia). Quaternary Research 57, 253258.

A.V. Sher , S.A. Kuzmina , T.V. Kuznetsova , L.D. Sulershitsky , 2005. New insights into the Weichselian environment and climate of the East Siberian Arctic derived from fossil insects, plants and mammals. Quaternary Science Reviews 24, 533569.

G. Stauch , F. Lehmkuhl , 2010. Quaternary glaciations in the Verkhoyansk Mountains, northeast Siberia. Quaternary Research 74, 145155.

G. Stoops , A. Jongerius , 1975. Proposals for a micromorphological classification of soil material. I. A classification of the related distributions of fine and coarse particles. Geoderma 13, 189199.

G. Stoops , V. Marcelino , F. Mees (Eds.), 2010. Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam.

A.H.L. Voelker , Workshop participants. 2002. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21, 11851212.

S. Wetterich , L. Schirrmeister , A.A. Andreev , M. Pudenz , B. Plessen , H. Meyer , V.V. Kunitsky , 2009. Eemian and Late Glacial/Holocene palaeoenvironmental records from permafrost sequences at the Dmitry Laptev Strait (NE Siberia, Russia). Paleogeography, Paleoclimatology, Paleoecology 279, 7395.

S. Wetterich , V. Tumskoy , N. Rudaya , A.A. Andreev , T. Opel , H. Meyer , L. Schirrmeister , 2014. Ice Complex formation in arctic East Siberia during the MIS3 Interstadial. Quaternary Science Reviews 84, 3955.

S. Wetterich , V. Tumskoy , N. Rudaya , V. Kuznetsov , F. Maksimov , T. Opel , H. Meyer , A.A. Andreev , L. Schirrmeister , 2016. Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic). Quaternary Science Reviews 147, 298311.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quaternary Research
  • ISSN: 0033-5894
  • EISSN: 1096-0287
  • URL: /core/journals/quaternary-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Murton supplementary material
Supplementary Figures

 Word (44.5 MB)
44.5 MB


Altmetric attention score

Full text views

Total number of HTML views: 825
Total number of PDF views: 2558 *
Loading metrics...

Abstract views

Total abstract views: 18818 *
Loading metrics...

* Views captured on Cambridge Core between 16th February 2017 - 22nd July 2017. This data will be updated every 24 hours.