Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T08:47:10.572Z Has data issue: false hasContentIssue false

Extent and Dynamics of the Scandinavian Ice Sheet during Oxygen Isotope Stage 3 (65,000–25,000 yr B.P.)1

Published online by Cambridge University Press:  20 January 2017

Neil S. Arnold
Affiliation:
Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, CB2 1ER, United Kingdom
Tjeerd H. van Andel
Affiliation:
Godwin Institute of Quaternary Research and Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, United Kingdom
Vidar Valen
Affiliation:
Interconsult Group ASA, Post-box 69, Sandsli, N5861 Bergen, Norway

Abstract

The climate of the middle Weichselian Glaciation, Marine Oxygen Isotope Stage 3 (OIS-3), a relatively mild period compared to the glacial maxima of OIS-4 and OIS-2, consisted of long warm interstades punctuated by brief cold excursions that grew colder and more frequent with time. The OIS-4 ice sheet is generally thought to have persisted throughout OIS-3, but evidence from dated OIS-3 interstadial deposits suggests that it was swiftly reduced to small remnants which only briefly expanded and retreated. Only 30,000 years ago the deteriorating climate initiated a sustained ice advance leading toward the final glacial maximum of OIS-2. Dynamic ice-sheet models support the existence of a prolonged ice-free interval during OIS-3 induced, perhaps, by low precipitation due to extensive sea-ice cover offshore.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This contribution is the second of a series of articles reporting the results of the Stage 3 project (van Andel, 2002). See the Stage 3 website for details and databases at http.//www.esc.cam.ac.uk/oistage3/Details/Homepage/html

References

Andersen, B.G., and Mangerud, J. The last interglacial–glacial cycle in Fennoscandia. Quaternary International 3/4, (1989). 2129.CrossRefGoogle Scholar
Andersen, B.G., Nydal, R., Wangen, O.P., and Østmo, S.R. Weichselian before 15,000 years B.P. at Jaeren-Karmøy in southwestern Norway. Boreas 10, (1981). 297314.CrossRefGoogle Scholar
Andersen, B.G., Sejrup, H.P., and Kirkhus, Ø. Eemian and Weichselian deposits at Bø on Karmøy, S.W. Norway, a preliminary report. Norges Geologisk Undersøgelse 380, (1983). 189201.Google Scholar
Arnold, N. S, and Sharp, M. J. (In press), Flow variability in the Scandinavian Ice Sheet.: Modeling the coupling between ice sheet flow and hydrology.Google Scholar
Beget, J.E. Modelling the influence of till rheology on the flow and profile of the Lake Michigan Lobe, southern Laurentide Ice Sheet, USA. Journal of Glaciology 32, (1986). 235241.CrossRefGoogle Scholar
Bergersen, O.F., Thoresen, M., and Hougsnaes, R. Evidence for a newly discovered Weichselian Interstadial in Gudbrandsdalen, central south Norway. Striae 34, (1991). 103108.Google Scholar
Boulton, G.S., and Clark, C.D. A highly mobile Laurentide Ice Sheet revealed by satellite images of glacial lineations. Nature 346, (1990). 813817.CrossRefGoogle Scholar
Boulton, G.S., and Clark, C.D. The Laurentide ice sheet through the last glacial cycle: The topology of drift lineations as a key to the syndynamic behavior of former ice sheets. Transactions of the Royal Society of Edinburgh, Series Earth Science 81, (1990). 327347.CrossRefGoogle Scholar
Budd, W.F., and Smith, I.N. The growth and retreat of ice sheets in response to orbital radiation changes. Sea Level, Ice and Climate Change. Proceedings of the Canberra Symposium, December 1979. (1981). IAHS Publication, Washington. p. 369–409 Google Scholar
Clark, C.D. Mega-scale glacial lineations and cross-cutting ice-flow landforms. Earth Surface Processes and Landforms 18, (1993). 129.CrossRefGoogle Scholar
Denton, G.H., and Hughes, T.J. The Last Great Ice Sheets. (1981). Wiley, New York.Google Scholar
Donner, J. The Quaternary History of Scandinavia. (1995). Cambridge Univ. Press, Cambridge.Google Scholar
Fowler, A.C. Sliding with cavity formation. Journal of Glaciology 33, (1987). 255267.CrossRefGoogle Scholar
Fowler, A.C. A theory of glacier surges. Journal of Geophysical Research 92, (1987). 91119120.CrossRefGoogle Scholar
Nature 364, (1993). 203207.CrossRefGoogle Scholar
Haldorsen, S., Rappol, M., Sønstegaard, E., and Henningsmoen, K. Interstadials and glaciotectonic deformation in Åstdalen, southeastern Norway. Sveriges Geologiska Undersökning, Ser. Ca, (1992). 125132.Google Scholar
Helmens, K.F., Räsänen, M.E., Johansson, P.W., Jungner, H., and Korjonen, K. The last interglacial–glacial cycle in NE Fennoscandia: A nearly continuous record from Sokli (Finnish Lapland). Quaternary Science Reviews 19, (2000). 16051624.CrossRefGoogle Scholar
Hillefors, A. The stratigraphy and genesis of the Dösebacka and Ellesbo drumlins: A contribution to the knowledge of the Weichsel glacial history in western Sweden. Geologiska Föreningens i Stockholm Förhandlingar 96, (1974). 335374.CrossRefGoogle Scholar
Houmark-Nielsen, M., and Kolstrup, E. A radiocarbon-dated Weichselian sequence from Sejerø, Denmark. Geologiska Föreningens i Stockholm Förhandlingar 103, (1981). 7378.CrossRefGoogle Scholar
Jöris, O., and Weninger, B. Extension of the 14-C calibration curve to ca. 40,000 cal BC by synchronizing Greenland 18O/16O ice-core records and North Atlantic Foraminifera profiles: A comparison with U/Th coral data. Radiocarbon 40, (1998). 495504.CrossRefGoogle Scholar
Jöris, O., and Weninger, B. Calendric age-conversion of glacial radiocarbon dates at the transition from the middle to the upper Palaeolithic in Europe. Bulletin de la Société Préhistorique Luxembourgeoise 18, (2000). 4355.Google Scholar
Kamb, B. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. Journal of Geophysical Research 92, (1987). 90839100.CrossRefGoogle Scholar
Kleman, J., Hätterstrand, C., Borgström, I., and Stroeven, A. Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model. Journal of Glaciology 43, (1997). 283299.CrossRefGoogle Scholar
Laj, C., Mazaud, A., and Duplessy, J.-C. Geomagnetic intensity and 14C abundance in the atmosphere and ocean during the past 50 kyr. Geophysical Research Letters 23, (1996). 20452048.CrossRefGoogle Scholar
Lambeck, K., and Chappell, J. Sea level change through the last glacial cycle. Science 292, (2001). 679686.CrossRefGoogle ScholarPubMed
Larsen, E., and Mangerud, J. Marine caves: On–off signals for glaciations. Quaternary International 3/4, (1989). 1319.CrossRefGoogle Scholar
Larsen, E.S., Gulliksen, S.-E., Lauritzen, R., Lie, R., Løvlie, R., and Mangerud, J. Cave stratigraphy in western Norway. Multiple Weichselian glaciations and deglaciations and interstadial vertebrate fauna. Boreas 16, (1987). 267292.CrossRefGoogle Scholar
Lundqvist, J. New information about early and middle Weichselian interstadials in northern Sweden. Sveriges Geologiska Undersökning C752, (1978). Google Scholar
Lundqvist, J. Stratigraphy of the central area of the Scandinavian glaciation. Quaternary Science Reviews 5, (1986). 269292.CrossRefGoogle Scholar
Lundqvist, J. Some problems of the Weichselian in central Scandinavia. Striae 34, (1991). 9598.Google Scholar
Lundqvist, J., and Mook, W.G. Finite date of the Jämtland Interstadial. Boreas 10, (1981). 133135.CrossRefGoogle Scholar
Lykke-Andersen, A.L. A late Saalian, Eemian and Weichselian marine sequence at Nørre Lyngby, Vendsyssel, Denmark. Boreas 16, (1987). 345357.CrossRefGoogle Scholar
Mangerud, J. The last ice age in Scandinavia. Striae 34, (1991). 1530.Google Scholar
Mangerud, J., Gulliksen, S., Larsen, E., Longva, O., Miller, G., Sejrup, H.P., and Sønstergaard, E. A middle Weichselian ice-free period in western Norway: The Ålesund Interstadial. Boreas 10, (1981). 447462.CrossRefGoogle Scholar
Matthews, W.H. Surface profiles of the Laurentide ice sheet in its marginal areas. Journal of Glaciology 13, (1974). 3743.CrossRefGoogle Scholar
Meese, D.A., Gow, A.J., Alley, R.B., Zielinski, G.A., Grootes, P.M., Ram, M., Taylor, K.C., Mayewski, P.A., and Bolzan, J.F. The Greenland Ice Sheet Project 2 depth–age scale: Methods and results. Journal of Geophysical Research 102, (1997). 2641126423.CrossRefGoogle Scholar
Miller, U. Pleistocene Deposits of the Alnarp Valley, Southern Sweden: Microfossils and Their Stratigraphic Application. (1977). University of LundDepartment of Quaternary Geology, Lund.Google Scholar
Nesje, A., and Dahl, S.O. Autochthonous block fields in southern Norway: Implications for the geometry, thickness and isostatic loading of the late Weichselian Scandinavian Ice Sheet. Journal of Quaternary Science 5, (1990). 225234.CrossRefGoogle Scholar
Olsen, L. Stadials and interstadials during the Weichsel glaciation in Finnmarksvidda, northern Norway. Boreas 17, (1988). 517539.CrossRefGoogle Scholar
Olsen, L. Rapid shifts in glacial extension characterise a new conceptual model for glacial variations during the mid and late Weichselian in Norway. Norges Geologiske Undersøgelse Bulletin 433, (1997). 5455.Google Scholar
Olsen, L. Pedomagnetic suceptibility in Norwegian paleosols and tills: A tool for stratigraphic correlation and paleo-rainfall estimation. Norges Geologisk Undersøgelse Bulletin 433, (1997). 5657.Google Scholar
Olsen, L. Pleistocene paleosols in Norway: Implications for past climate and glacial erosion. Catena 34, (1998). 75103.CrossRefGoogle Scholar
Olsen, L., and Grøsfjeld, K. Middle and late Weichselian high relative sea levels in Norway: Implications for glacial isostasy and ice-retreat rates. Norges Geologiske Undersøkelse Bulletin 435, (1999). 4351.Google Scholar
Olsen, L., Mejdahl, V., and Selvik, S.F. Middle and late Pleistocene stratigraphy, chronology and glacial history in Finnmark, north Norway. Norges Geologisk Undersøgelse Bulletin 429, (1996). Google Scholar
Olsen, L., Van der Borg, K., Bergstrøm, B., Sveian, H., Lauritzen, S.-E., and Hansen, G. AMS radiocarbon dating of glacigenic sediments with low organic content—An important tool for reconstructing the history of glacial variations in Norway. Norsk Geologisk Tidsskrift 81, (2001). 5992.Google Scholar
Olsen, L., Sveian, H., and Bergstrøm, B. Rapid adjustments of the western part of the Scandinavian ice sheet during the mid- and late Weichselian—A new model. Norsk Geologisk Tidsskrift 81, (2001). 93118.Google Scholar
Pohjola, V.A., and Rogers, J.C. Atmospheric circulation and variations in Scandinavian glacier mass balance. Quaternary Research 47, (1997). 2936.CrossRefGoogle Scholar
Porter, S.C. Some geological implications of average Quaternary glacial conditions. Quaternary Research 32, (1989). 245261.CrossRefGoogle Scholar
Punkari, M. Research Council for the Natural Sciences, Final Report, Project 01/663. (1989). 86 Google Scholar
Robertsson, A.-M., and Ambrosiani, K.G. The Pleistocene in Sweden—A review of research. Sveriges Geologiska Undersökning, Ser. Ca 81, (1992). 19601990.Google Scholar
Rokoengen, K., Olsen, L., and Selvik, S.F. Sub-till sediments at Rokoberget, southeastern Norway. Norges geologiske Undersøgelse Bulletin 424, (1993). 112.Google Scholar
Röthlisberger, H. Water pressure in intra- and subglacial channels. Journal of Glaciology 11, (1972). 177203.CrossRefGoogle Scholar
Shreve, R.L. Movement of water in glaciers. Journal of Glaciology 11, (1972). 205214.CrossRefGoogle Scholar
Thoresen, M., and Bergersen, O.F. Sub-till sediments in Folldal, Hedmark, Southeast Norway. Norges Geologisk Undersøkelse Bulletin 389, (1983). 3755.Google Scholar
Ukkonen, P., Lunkka, J.P., Jugner, H., and Donner, J. New radiocarbon dates from Finnish mammoths indicating large ice-free areas in Fennoscandia during the middle Weichselian. Journal of Quaternary Research 14, (1999). 711714.Google Scholar
Valen, V. Lithostratigraphy and Paleomagnetism in a Karst Cave and Two Sea Caves in Norway. (1995). University of Bergen, Bergen.Google Scholar
Valen, V., Larsen, E., and Mangerud, J. High resolution paleomagnetic correlation of middle Weichselian ice-dammed lake sediments in two coastal caves, western Norway. Boreas 24, (1995). 141153.CrossRefGoogle Scholar
Valen, V., Larsen, E., Mangerud, J., and Hufthammer, A.K. Sedimentology and stratigraphy in the cave Hamnsundhelleren, western Norway. Journal of Quaternary Science 11, (1996). 185201.3.0.CO;2-Y>CrossRefGoogle Scholar
Valen, V., Lauritzen, S.-E., and Løvlie, R. Sedimentation in a high-latitude karst cave: Sirijordgrotta, Nordland, Norway. Norsk Geologisk Tidskrift 77, (1997). 233250.Google Scholar
van Andel, T.H. The climate and landscape of the middle part of the Weichselian glaciation in Europe: The Stage 3 Project. Quaternary Research 57, (2002). 28.CrossRefGoogle Scholar
van Andel, T.H., and Tzedakis, P.C. Palaeolithic landscapes of Europe and environs. Quaternary Science Reviews 15, (1996). 25000150000.CrossRefGoogle Scholar
Völker, A.H., Sarnthein, M., Grootes, P., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., and Schleicher, X.X. Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: Implications for radiocarbon calibration beyond 25 ka BP. Radiocarbon 40, (1998). 517534.CrossRefGoogle Scholar