Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T04:40:07.148Z Has data issue: false hasContentIssue false

Increased discharge of Yellow River sediments into the western Bohai Sea since 0.71 Ma

Published online by Cambridge University Press:  05 January 2023

Xin Zhang
Affiliation:
Qingdao Institute of Marine Geology, Qingdao, 266071, China Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Baojing Yue*
Affiliation:
Qingdao Institute of Marine Geology, Qingdao, 266071, China Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Jian Liu
Affiliation:
Qingdao Institute of Marine Geology, Qingdao, 266071, China Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
Tianyuan Chen
Affiliation:
Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
Junqiang Zhang
Affiliation:
Institute of Geology and Paleontology, Linyi University, Linyi, 276005, China
Yuhui An
Affiliation:
College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China
*
*Corresponding author email address: <31417649@qq.com>

Abstract

The Yellow River originates on the Tibetan Plateau and transports vast amounts of terrestrial sediment to the ocean. However, previous studies have not reached a consensus as to when and how the Yellow River first began to flow into the sea. Here we present Sr-Nd-Pb isotope data and a high-resolution clay mineral record of a 200-m-long sediment core recovered from the modern Yellow River delta. The changes in Sr-Nd-Pb isotopic compositions and clay minerals at 0.71 Ma suggest that a larger proportion of sediment was derived from the Yellow River after this time. We propose that the Yellow River has influenced the Bohai Sea since 1.9 Ma (or even earlier), which provides important evidence for an older Yellow River than 1.2 Ma. A significant increase in discharge of Yellow River sediments since 0.71 Ma is due to continuing subsidence of the eastern China coast, the large amplitude of Quaternary sea-level changes, and increased supply of eroded loess during the last 1.0 Ma. After this time, the contribution of local rivers surrounding the Bohai Sea became negligible due to dilution by the huge amounts of Yellow River sediments. These results provide improved constraints on the evolution of the Yellow River and subsequent land-sea fluxes.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adriaens, R., Zeelmaekers, E., Fettweis, M., Vanlierde, E., Vanlede, J., Stassen, P., Elsen, J., Środoń, J., Vandenberghe, N., 2018. Quantitative clay mineralogy as provenance indicator for recent muds in the southern North Sea. Marine Geology 398, 4858.CrossRefGoogle Scholar
Berger, W.H., Yasuda, M.K., Bickert, T., Wefer, G., Takayama, T., 1994. Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806. Geology 22, 463467.2.3.CO;2>CrossRefGoogle Scholar
Bird, A., Millar, I., Rodenburg, T., Stevens, T., Rittner, M., Vermeesch, P., Lu, H.Y., 2020. A constant Chinese Loess Plateau dust source since the late Miocene. Quaternary Science Reviews 227, 106042. https://doi.org/10.1016/j.quascirev.2019.106042.CrossRefGoogle Scholar
Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin 76, 803832.CrossRefGoogle Scholar
Biscaye, P.E., Grousset, F.E., Revel, M., Van der Gaast, S., Zielinski, G.A., Vaars, A., Kukla, G., 1997. Asian provenance of glacial dust (stage2) in the Greenland ice sheet project 2 ice core, summit, Greenland. Journal of Geophysical Research, Oceans 102, 2676526781.CrossRefGoogle Scholar
Chen, J., Li, G., Yang, J., Rao, W., Lu, H., Balsam, W., Sun, Y., Li, J., 2007. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta 71, 39043914.CrossRefGoogle Scholar
Choi, M.-S., Yi, H-I., Yang, S.Y., Lee, C.B., Cha, H.-J., 2007. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. Marine Chemistry 107, 255274.CrossRefGoogle Scholar
Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., Wang, E., Chen, L., 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23, TC106. https://doi.org/10.1029/2002TC001402.CrossRefGoogle Scholar
Clift, P., 2006. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters 241, 571580.CrossRefGoogle Scholar
Clift, P.D., Jonell, T.N., 2021. Monsoon controls on sediment generation and transport: mass budget and provenance constraints from the Indus River catchment, delta and submarine fan over tectonic and multimillennial timescales. Earth-Science Reviews 220, 103682. https://doi.org/10.1016/j.earscirev.2021.103682.CrossRefGoogle Scholar
Cosgrove, G.I.E., Colombera, L., Mountney, N.P., 2022. The role of subsidence and accommodation generation in controlling the nature of the aeolian stratigraphic record. Journal of the Geological Society 179, jgs2021042. https://doi.org/10.1144/jgs2021-042.CrossRefGoogle Scholar
Craddock, W.H., Kirby, E., Harkins, N.W., Zhang, H.P., Shi, X.H., Liu, J.H., 2010. Rapid fluvial incision along the Yellow River during headward basin integration. Nature Geoscience 3, 209213.CrossRefGoogle Scholar
Dalrymple, R.W., Choi, K., 2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews 81, 135174.CrossRefGoogle Scholar
Dauteuil, O., Bessin, P., Guillocheau, F., 2015. Topographic growth around the Orange River valley, southern Africa: a Cenozoic record of crustal deformation and climatic change. Geomorphology 233, 519.CrossRefGoogle Scholar
Dou, Y.G., Li, J., Zhao, J.T., Wei, H.L., Yang, S.Y., Bai, F.L., Zhang, D.L., Ding, X., Wang, L.B., 2014. Clay mineral distributions in surface sediments of the Liaodong Bay, Bohai Sea and surrounding river sediments: sources and transport patterns. Continental Shelf Research 73, 7282.CrossRefGoogle Scholar
Ehrmann, W., Schmiedl, G., Hamann, Y., Kuhnt, T., Hemleben, C., Siebel, W., 2007. Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 249, 3657.CrossRefGoogle Scholar
Gallet, S., Jahn, B.-M., Torri, M., 1996. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chemical Geology 133, 6788.CrossRefGoogle Scholar
Gibbard, P.L., Lewin, J., 2009. River incision and terrace formation in the late Cenozoic of Europe. Tectonophysics 474, 4155.CrossRefGoogle Scholar
Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., Liu, T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159163.CrossRefGoogle ScholarPubMed
Head, M.J., Gibbard, P.L., 2015. Early–middle Pleistocene transitions: linking terrestrial and marine realms. Quaternary International 389, 746.CrossRefGoogle Scholar
He, L., Xue, C.T., Ye, S.Y., Amorosi, A., Yuan, H.M., Yang, S.X., Laws, E.A., 2019. New evidence on the spatial-temporal distribution of superlobes in the Yellow River Delta Complex. Quaternary Science Reviews 214, 117138.CrossRefGoogle Scholar
He, L., Amorosi, A., Ye, S.Y., Xue, C.T., Yang, S.X., Laws, E.A., 2020. River avulsions and sedimentary evolution of the Luanhe fan-delta system (North China) since the late Pleistocene. Marine Geology 425, 106194. https://doi.org/10.1016/j.margeo.2020.106194.CrossRefGoogle Scholar
Hilgen, F.J., Lourens, L.J., Van Dam, J.A., 2012. The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), The Geological Time Scale 2012. Elsevier BV, Amsterdam, pp. 923978.CrossRefGoogle Scholar
Hu, B.Q., Li, G.G., Li, J., Bi, J.Q., Zhao, J.T., Bu, R.Y., 2012. Provenance and climate change inferred from Sr-Nd-Pb isotopes of late Quaternary sediments in the Huanghe (Yellow River) Delta, China. Quaternary Research 78, 561571.CrossRefGoogle Scholar
Hu, Z.B., Li, M.H., Dong, Z.J., Guo, L.Y., Bridgland, D., Pan, B.T., Li, X.H., Liu, X.F., 2019. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River. Global and Planetary Change 178, 129138.CrossRefGoogle Scholar
Huang, X.T., Mei, X., Yang, S.Y., Zhang, X.H., Li, F.L., Hohl, S.V., 2021. Disentangling combined effects of sediment sorting, provenance, and chemical weathering from a Pliocene–Pleistocene sedimentary core (CSDP-1) in the South Yellow Sea. Geochemistry, Geophysics, Geosystems 22, e2020GC009569. https://doi.org/10.1029/2020GC009569.CrossRefGoogle Scholar
Humphrey, N.F., Konrad, S.K., 2000. River incision or diversion in response to bedrock uplift. Geology 28, 4346.2.0.CO;2>CrossRefGoogle Scholar
Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters 50, 139155.CrossRefGoogle Scholar
Jahn, B.M., Gallet, S., Han, J., 2001. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology 178, 7194.CrossRefGoogle Scholar
Jiang, F.C., Fu, J.L., Wang, S.B., Sun, D.H., Zhao, Z.Z., 2007. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China. Quaternary International 175, 6270.CrossRefGoogle Scholar
Jiang, F.Q., Xiong, Z.F., Frank, M., Yin, X.B., Li, A.C., 2019. The evolution and control of detrital sediment provenance in the middle and northern Okinawa Trough since the last deglaciation: evidence from Sr and Nd isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 522, 111.CrossRefGoogle Scholar
Kong, P., Jia, J., Zheng, Y., 2014. Time constraints for the Yellow River traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems 15, 395407.CrossRefGoogle Scholar
Li, B.F., Sun, D.H., Xu, W.H., Wang, F., Liang, B.Q., Ma, Z.W., Wang, X., Li, Z.J., Chen, F.H., 2017. Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River. Quaternary Science Reviews 156, 6989.CrossRefGoogle Scholar
Li, J.J., Fang, X.M., Song, C.H., Pan, B.T., Ma, Y.Z., Yan, M.D., 2014. Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research 81, 400423.CrossRefGoogle Scholar
Lin, A.M., Yang, Z.Y., Sun, Z.M., Yang, T.S., 2001. How and when did the Yellow River develop its square bend? Geology 29, 951954.2.0.CO;2>CrossRefGoogle Scholar
Liu, C.Q., Masuda, A., Okada, A., Yabuki, S., Fan, Z.L., 1994. Isotope geochemistry of Quaternary deposits from the arid lands in northern China. Earth and Planetary Science Letters 127, 2538.CrossRefGoogle Scholar
Liu, J., Saito, Y., Wang, H., Zhou, L., Yang, Z., 2009. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea. Journal of Asian Earth Sciences 36, 318331.CrossRefGoogle Scholar
Liu, J., Wang, H., Wang, F., Qiu, J., Saito, Y., Lu, J., Zhou, L., Xu, G., Du, X., Chen, Q., 2016. Sedimentary evolution during the last ~1.9 Ma near the western margin of the modern Bohai Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 451, 8496.CrossRefGoogle Scholar
Liu, J., Zhang, J.Q., Miao, X.D., Xu, S.J., Wang, H. X., 2020. Mineralogy of the core YRD-1101 of the Yellow River Delta: implications for sediment origin and environmental evolution during the last ~1.9Myr. Quaternary International 537, 7987.CrossRefGoogle Scholar
Liu, J., Zhang, X.H., Mei, X., Zhao, Q.H., Guo, X.W., Zhao, W.N., Liu, J.X., et al. , 2018. The sedimentary succession of the last ~3.50 Myr in the western South Yellow Sea: Paleoenvironmental and tectonic implications. Marine Geology 399, 4765.CrossRefGoogle Scholar
Liu, Y., 2020. Neogene fluvial sediments in the northern Jinshaan Gorge, China: implications for early development of the Yellow River since 8 Ma and its response to rapid subsidence of the Weihe-Shanxi Graben. Palaeogeography, Palaeoclimatology, Palaeoecology 546, 109675. https://doi.org/10.1016/j.palaeo.2020.109675.CrossRefGoogle Scholar
Liu, Z.J., Sun, Y.J., 2007. Uplift of the Qinghai-Tibet Plateau and formation, evolution of the Yellow River. Geography and Geo-Information Science 23, 7982. [in Chinese with English abstract]Google Scholar
Maslin, M.A., Brierley, C.M., 2015. The role of orbital forcing in the early Middle Pleistocene Transition. Quaternary International 389, 4755.CrossRefGoogle Scholar
McCarthy, F.M.G., Katz, M.E., Kotthoff, U., Browning, J.V., Miller, K.G., Zanatta, R., Williams, R.H., et al. , 2013. Sea-level control of New Jersey margin architecture: palynological evidence from Integrated Ocean Drilling Program Expedition 313. Geosphere 9, 14571487.CrossRefGoogle Scholar
Meng, X.W., Liu, Y.G., Shi, X.F., Du, D.W., 2008. Nd and Sr isotopic compositions of sediments from the Yellow and Yangtze rivers: implications for partitioning tectonic terranes and crust weathering of the Central and Southeast China. Frontiers of Earth Science in China 2, 418426.CrossRefGoogle Scholar
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugar, P.J., Cramer, B.S., Christie-Blick, N., Pekar, S.E., 2005. The Phanerozoic record of global sea-level change. Science 310, 12931298.CrossRefGoogle ScholarPubMed
Milliman, J.D., Farnsworth, K.L., 2011. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Milliman, J.D., Meade, R.H., 1983. World-wide delivery of river sediment to the oceans. The Journal of Geology 91, 121.CrossRefGoogle Scholar
Milliman, J.D., Qin, Y.S., Ren, M.E., Saito, Y., 1987. Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. The Journal of Geology 95, 751762.CrossRefGoogle Scholar
Morton, A.C., Hallsworth, C.R., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology 124, 329.CrossRefGoogle Scholar
Mudelsee, M., Schulz, M., 1997. The Middle-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters 151, 117123.CrossRefGoogle Scholar
Nie, J.S., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., et al. , 2015. Loess Plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications 6, 8511. https://doi.org/10.1038/ncomms9511.CrossRefGoogle ScholarPubMed
Pan, B.T., Wang, J.P., Gao, H.S., Guan, Q.Y., Wang, Y., Su, H., Li, B.Y., Li, J.J., 2005. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River's running through Sanmen Gorges. Chinese Science Bulletin 50, 657664.CrossRefGoogle Scholar
Parham, P.R., Riggs, S.R., Culver, S.J., Mallinson, D.J., Rink, W.J., Burdette, K., 2012. Quaternary coastal lithofacies, sequence development and stratigraphy in a passive margin setting, North Carolina and Virginia, USA. Sedimentology 60, 503547.CrossRefGoogle Scholar
Parra, M., Faugeres, J.-C., Grousset, F., Pujol, C., 1997. Sr-Nd isotopes as tracers of fine-grained detrital sediments: the South-Barbados accretionary prism during the last 150 kyr. Marine Geology 136, 225243.CrossRefGoogle Scholar
Qin, Y., Zhao, Y., Chen, L., Zhao, S., 1990. Geology of the Bohai Sea. Science Press, Beijing. [in Chinese]Google Scholar
Qin, Y.C., Mei, X., Jiang, X.J., Luan, X.W., Zhou, L.Y., Zhu, X.Q., 2021. Sediment provenance and tidal current-driven recycling of Yellow River detritus in the Bohai Sea, China. Marine Geology 436, 106473. https://doi.org/10.1016/j.margeo.2021.106473.CrossRefGoogle Scholar
Rao, V.P., Shynu, R., Singh, S.K., Naqvi, S.W.A., Kessarkar, P.M., 2015. Mineralogy and Sr-Nd isotopes of SPM and sediment from the Mandovi and Zuari estuaries: Influence of weathering and anthropogenic contribution. Estuarine, Coastal and Shelf Science 156, 103115.Google Scholar
Rao, W.B., Chen, J., Yang, J.D., Ji, J.F., Li, G.J., Tan, H.B., 2008. Sr-Nd isotopic characteristics of eolian deposits in the Erdos Desert and Chinese Loess Plateau: implications for their provenances. Geochemical Journal 42, 273282.CrossRefGoogle Scholar
Rao, W.B., Chen, J., Tan, H.B., Jiang, S.Y., Su, J., 2011. Sr-Nd isotopic and REE geochemical constraints on the provenance of fine-grained sands in the Ordos deserts, north-central China. Geomorphology 132, 123138.CrossRefGoogle Scholar
Rao, W.B., Mao, C.P., Wang, Y.G., Huang, H.M., Ji, J.F., 2017. Using Nd-Sr isotopes and rare earth elements to study sediment provenance of the modern radial sand ridges in the southwestern Yellow Sea. Applied Geochemistry 81, 2335.CrossRefGoogle Scholar
Ren, M., 2015. Sediment discharge of the Yellow River, China: past, present and future—A synthesis. Acta Oceanologica Sinica 34, 18.CrossRefGoogle Scholar
Ren, M.E., Shi, Y.L., 1986. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Continental Shelf Research 6, 785810.CrossRefGoogle Scholar
Ridente, D., Petrungaro, R., Falese, F., Chiocci, F.L., 2012. Middle–Upper Pleistocene record of 100-ka depositional cycles on the Southern Tuscany continental margin (Tyrrhenian Sea, Italy): sequence architecture and margin growth pattern. Marine Geology 326–328, 113.CrossRefGoogle Scholar
Shi, Y.F., 1998. Evolution of the cryosphere in the Tibetan Plateau, China, and its relationship with the global change in the mid Quaternary. Journal of Glaciology and Geocryology 20, 197208. [in Chinese with English abstract]Google Scholar
Steinke, S., Hanebuth, T.J.J., Vogt, C., Stattegger, K., 2008. Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17,000 yr. Marine Geology 250, 199210.CrossRefGoogle Scholar
Sun, J.M., Zhu, X.K., 2010. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma: implications for provenance change. Earth and Planetary Science Letters 290, 438447.CrossRefGoogle Scholar
Sun, L.S., Liu, J., Qiu, J.D., Li, G.T., Xiang, L.S., 2014. Studies on magnetostratigraphy of core YRD-1101 sediments on the north shore of modern Yellow River Delta. Marine Geology & Quaternary Geology 34, 3140. [in Chinese with English abstract]Google Scholar
Thiry, M., 2000. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews 49, 201221.CrossRefGoogle Scholar
Wang, H.J., Yang, Z.S., Saito, Y., Liu, J.P., Sun, X.X., Wang, Y., 2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): impacts of climate change and human activities. Global and Planetary Change 57, 331354.CrossRefGoogle Scholar
Xiao, G.Q., Sun, Y.Q., Yang, J.L., Yin, Q.Z., Dupont-Nivet, G., Licht, A., Kehew, A.E., et al. , 2020. Early Pleistocene integration of the Yellow River I: detrital-zircon evidence from the North China Plain. Palaeogeography, Palaeoclimatology, Palaeoecology 546, 109691. https://doi.org/10.1016/j.palaeo.2020.109691.CrossRefGoogle Scholar
Xiao, G.Q., Pan, Q., Zhao, Q.Y., Yin, Q.Z., Chen, R.S., Ao, H., Li, X.X., Zhu, Z.M., 2021. Early Pleistocene integration of the Yellow River II: evidence from the Plio-Pleistocene sedimentary record of the Fenwei Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 557, 110550. https://doi.org/10.1016/j.palaeo.2021.110550.CrossRefGoogle Scholar
Xiong, J.G., Zhang, H.P., Zhao, X.D., Liu, Q.R., Li, Y.L., Zhang, P.Z., 2021. Origin of the youngest Cenozoic aeolian deposits in the southeastern Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 561, 110080. https://doi.org/10.1016/j.palaeo.2020.110080.CrossRefGoogle Scholar
Xiong, J.G., Liu, Y.M., Zhang, P.Z., Deng, C.L., Picotti, V., Wang, W.T., Zhang, K., et al. , 2022. Entrenchment of the Yellow River since the late Miocene under changing tectonics and climate. Geomorphology 416, 108428. https://doi.org/10.1016/j.geomorph.2022.108428.CrossRefGoogle Scholar
Xue, C., Zhou, Y., Wang, G., 2003. Reviews of the Yellow River delta superlobes since 700 BC. Marine Geology & Quaternary Geology 23, 2329. [in Chinese with English abstract]Google Scholar
Yang, J.D., Li, G.J., Dai, Y., Rao, W.B., Ji, J.F., 2009. Isotopic evidences for provenances of loess of the Chinese Loess Plateau. Earth Science Frontiers 16, 195206. [in Chinese with English abstract]Google Scholar
Yang, J.L., Yuan, H.F., Hu, Y.Z., Wang, F., 2022. Significance of sedimentary provenance reconstruction based on borehole records of the North China Plain for the evolution of the Yellow River. Geomorphology 401, 108077. https://doi.org/10.1016/j.geomorph.2021.108077.CrossRefGoogle Scholar
Yang, S.Y., Jiang, S.Y., Ling, H.F., Xia, X.P., Sun, M., Wang, D.J., 2007. Sr-Nd isotopic compositions of the Changjiang sediments: implications for tracing sediment sources. Science in China Series D: Earth Sciences 50, 15561565.CrossRefGoogle Scholar
Yao, Z., Shi, X., Qiao, S., Liu, Q., Kandasamy, S., Liu, J., Liu, Y., Fang, X., Gao, J., Dou, Y., 2017. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago. Scientific Reports 7, 2827. https://doi.org/10.1038/s41598-017-03140-x.CrossRefGoogle Scholar
Yi, L., Deng, C.L., Tian, L.Z., Xu, X.Y., Jiang, X.Y., Qiang, X.K., Qin, H.F., et al. , 2016. Plio-Pleistocene evolution of Bohai Basin (East Asia): demise of Bohai Paleolake and transition to marine environment. Scientific Reports 6, 29403. https://doi.org/10.1038/srep29403.CrossRefGoogle ScholarPubMed
Zhang, J., Wan, S.M., Clift, P.D., Huang, J., Yu, Z.J., Zhang, K.D., Mei, X., et al. , 2019. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing? Quaternary Science Reviews 216, 7488.CrossRefGoogle Scholar
Zhang, W.L., Zhang, T., Song, C.H., Erwin, A., Mao, Z.Q., Fang, Y.H., Lu, Y., et al. , 2017. Termination of fluvial-alluvial sedimentation in the Xining Basin, NE Tibetan Plateau, and its subsequent geomorphic evolution. Geomorphology 297, 8699.CrossRefGoogle Scholar
Zheng, H.B., Huang, X.T., Ji, J.L., Liu, R., Zeng, Q.Y., Jiang, F.C., 2007. Ultra-high rates of loess sedimentation at Zhengzhou since Stage 7: implication for the Yellow River erosion of the Sanmen Gorge. Geomorphology 85, 131142.CrossRefGoogle Scholar
Supplementary material: File

Zhang et al. supplementary material

Zhang et al. supplementary material

Download Zhang et al. supplementary material(File)
File 44.3 KB